Adsorption Characteristics of Coconut Husk Biochar for Organics in Water

Vo Cong Minh(1), Nguyen Nhat Huy(2), Thuy Nguyen Thi(3), Lien Thi Le Nguyen(4*)
(1) Faculty of Chemistry, Ho Chi Minh City University of Education (HCMUE), 280 An Duong Vuong Street, District 5, Ho Chi Minh City 700000, Vietnam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
(2) Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
(3) Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam; School of Chemical and Environmental Engineering, International University (HCMIU), Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam
(4) Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam
(*) Corresponding Author
Abstract
Keywords
References
[1] Guillotin, S., and Delcourt, N., 2022, Studying the impact of persistent organic pollutants exposure on human health by proteomic analysis: A systematic review, Int. J. Mol. Sci., 23 (22), 14271.
[2] Obi, C.C., Abonyi, M.N., Ohale, P.E., Onu, C.E., Nwabanne, J.T., Igwegbe, C.A., Kamuche, T.T., and Ozofor, I.H., 2024, Adsorption of antibiotics from aqueous media using nanocomposites: Insight into the current status and future perspectives, Chem. Eng. J., 497, 154767.
[3] Ahmed, M.N., Abdelsamad, A., Wassermann, T., Porse, A., Becker, J., Sommer, M.O.A., Høiby, N., and Oana, C., 2020, The evolutionary trajectories of P. aeruginosa in biofilm and planktonic growth modes exposed to ciprofloxacin: beyond selection of antibiotic resistance, npj Biofilms Microbiomes, 6 (1), 28.
[4] Anh, H.Q., Le, T.P.Q., Da Le, N., Lu, X.X., Duong, T.T., Garnier, J., Rochelle-Newall, E., Zhang, S., Oh, N.H., Oeurng, C., Ekkawatpanit, C., Nguyen, T.D., Nguyen, Q.T., Nguyen, T.D., Nguyen, T.N., Tran, T.L., Kunisue, T., Tanoue, R., Takahashi, S., Minh, T.B., Le, H.T., Pham, T.N.M., and Nguyen, T.A.H., 2021, Antibiotics in surface water of East and Southeast Asian countries: A focused review on contamination status, pollution sources, potential risks, and future perspectives, Sci. Total Environ., 764, 142865.
[5] Russell, J.N., and Yost, C.K., 2021, Alternative, environmentally conscious approaches for removing antibiotics from wastewater treatment systems, Chemosphere, 263, 128177.
[6] Percivalle, N.M., Carofiglio, M., Hernández, S., and Cauda, V., 2024, Ultra-fast photocatalytic degradation of Rhodamine B exploiting oleate-stabilized zinc oxide nanoparticles, Discover Nano, 19 (1), 126.
[7] Fiorito, S., Epifano, F., Palumbo, L., Collevecchio, C., Bastianini, M., Cardellini, F., Spogli, R., and Genovese, S., 2022, Efficient removal of tartrazine from aqueous solutions by solid sorbents, Sep. Purif. Technol., 290, 120910.
[8] Soran, M.L., Bocșa, M., Pintea, S., Stegarescu, A., Lung, I., Opriş, O., 2024, Commercially biochar applied for tartrazine removal from aqueous solutions, Appl. Sci., 14 (1), 53.
[9] Cano, F.J., Reyes-Vallejo, O., Sánchez-Albores, R.M., Sebastian, P.J., Cruz-Salomón, A., Hernández-Cruz, M.C., Montejo-López, W., González Reyes, M., Serrano Ramirez, R.D., and Torres-Ventura, H.H., 2025, Activated biochar from pineapple crown biomass: a high-efficiency adsorbent for organic dye removal, Sustainability, 17 (1), 99.
[10] Zhou, R., Zhang, M., and Shao, S., 2022, Optimization of target biochar for the adsorption of target heavy metal ion, Sci. Rep., 12 (1), 13662.
[11] Ambaye, T.G., Vaccari, M., van Hullebusch, E.D., Amrane, A., and Rtimi, S., 2021, Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater, Int. J. Environ. Sci. Technol., 18 (10), 3273–3294.
[12] Tomczyk, A., Sokołowska, Z., and Boguta, P., 2020, Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects, Rev. Environ. Sci. Bio/Technol., 19 (1), 191–215.
[13] Ahmed, M.B., Zhou, J.L., Ngo, H.H., Johir, M.A.H., Sun, L., Asadullah, M., and Belhaj, D., 2018, Sorption of hydrophobic organic contaminants on functionalized biochar: Protagonist role of π-π electron-donor-acceptor interactions and hydrogen bonds, J. Hazard. Mater., 360, 270–278.
[14] Ndoun, M.C., Elliott, H.A., Preisendanz, H.E., Williams, C.F., Knopf, A., and Watson, J.E., 2021, Adsorption of pharmaceuticals from aqueous solutions using biochar derived from cotton gin waste and guayule bagasse, Biochar, 3 (1), 89–104.
[15] Zeng, Z., Tan, X., Liu, Y., Tian, S., Zeng, G., Jiang, L., Liu, S., Li, J., Liu, N., and Yin, Z., 2018, Comprehensive adsorption studies of doxycycline and ciprofloxacin antibiotics by biochars prepared at different temperatures, Front. Chem., 6, 80.
[16] Desai, V.N., Afieroho, O.E., Dagunduro, B.O., Okonkwo, T.J., and Ndu, C.C., 2011, A simple UV spectrophotometric method for the determination of levofloxacin in dosage formulations, Trop. J. Pharm. Res., 10 (1), 75–79.
[17] Ramesh, P.J., Basavaiah, K., Divya, M.R., Rajendraprasad, N., Vinay, K.B., and Revanasiddappa, H.D., 2011, Simple UV and visible spectrophotometric methods for the determination of doxycycline hyclate in pharmaceuticals, J. Anal. Chem., 66 (5), 482–489.
[18] Abodif, A.M., Meng, L., Sanjrani, M.A., Ahmed, A.S.A., Belvett, N., Wei, Z.Z., and Ning, D., 2020, Mechanisms and models of adsorption: TiO2-supported biochar for removal of 3,4-dimethylaniline, ACS Omega, 5 (23), 13630–13640.
[19] Ajien, A., Idris, J., Md Sofwan, N., Husen, R., and Seli, H., 2023, Coconut shell and husk biochar: A review of production and activation technology, economic, financial aspect and application, Waste Manage. Res., 41 (1), 37–51.
[20] Adu-Poku, D., Saah, S.A., Sakyi, P.O., Bandoh, C.K., Agyei-Tuffour, B., Azanu, D., Oteng-Peprah, M., Hawawu, I., Azibere, S., and Affram, K.A., 2024, Acid‐activated biochar for efficient elimination of amoxicillin from wastewater, J. Chem., 2024 (1), 3648098.
[21] Nandiyanto, A.B.D., Oktiani, R., and Ragadhita, R., 2019, How to read and interpret FTIR spectroscope of organic material, Indones. J. Sci. Technol., 4 (1), 97–118.
[22] Janu, R., Mrlik, V., Ribitsch, D., Hofman, J., Sedláček, P., Bielská, L., and Soja, G., 2021, Biochar surface functional groups as affected by biomass feedstock, biochar composition and pyrolysis temperature, Carbon Resour. Convers., 4, 36–46.
[23] Schott, J.A., Do-Thanh, C.L., Shan, W., Puskar, N.G., Dai, S. and Mahurin, S.M., 2021, FTIR investigation of the interfacial properties and mechanisms of CO2 sorption in porous ionic liquids, Green Chem. Eng., 2 (4), 392–401.
[24] Huang, B., Huang, D., Zheng, Q., Yan, C., Feng, J., Gao, H., Fu, H., and Liao, Y., 2023, Enhanced adsorption capacity of tetracycline on porous graphitic biochar with an ultra-large surface area, RSC Adv., 13 (15), 10397–10407.
[25] Atalay Eroğlu, H., Kadıoğlu, E.N., and Akbal, F., 2024, High-efficiency removal of Rhodamine B using modified biochar from agricultural waste pine nutshell: Investigation of kinetics, isotherms, and artificial neural network modeling, Biomass Convers. Biorefin., s13399-024-06045-8.
[26] Wei, J., Liu, Y., Li, J., Zhu, Y., Yu, H., and Peng, Y., 2019, Adsorption and co-adsorption of tetracycline and doxycycline by one-step synthesized iron loaded sludge biochar, Chemosphere, 236, 124254.
[27] Yang, D., Li, J., Luo, L., Deng, R., He, Q., and Chen, Y., 2020, Exceptional levofloxacin removal using biochar-derived porous carbon sheets: Mechanisms and density-functional-theory calculation, Chem. Eng. J., 387, 124103.
[28] Limbikai, S.S., Deshpande, N.A., Kulkarni, R.M., Khan, A.A.P., and Khan, A., 2016, Kinetics and adsorption studies on the removal of levofloxacin using coconut coir charcoal impregnated with Al2O3 nanoparticles, Desalin. Water Treat., 57 (50), 23918–23926.
[29] Yan, B., and Niu, C.H., 2017, Modeling and site energy distribution analysis of levofloxacin sorption by biosorbents, Chem. Eng. J., 307, 631–642.
[30] Kecili, R., and Hussain, C.M., 2018, “Mechanism of Adsorption on Nanomaterials” in Nanomaterials in Chromatography, Elsevier, Amsterdam, Netherlands, 89–115.
[31] Li, X., Shi, J., and Luo, X., 2022, Enhanced adsorption of rhodamine B from water by Fe-N co-modified biochar: Preparation, performance, mechanism and reusability, Bioresour. Technol., 343, 126103.
[32] Behera, A.K., Shadangi, K.P., and Sarangi, P.K., 2024, Efficient removal of Rhodamine B dye using biochar as an adsorbent: Study the performance, kinetics, thermodynamics, adsorption isotherms and its reusability, Chemosphere, 354, 141702.
[33] Pompeu, L.D., Druzian, D.M., Oviedo, L.R., Viana, A.R., Mortari, S.R., Pavoski, G., Espinosa, D.C.R., Vizzotto, B.S., Fernandes, L.S., and da Silva, W.L., 2023, Adsorption of rhodamine B dye onto novel biochar: Isotherm, kinetic, thermodynamic study and antibiofilm activity, Inorg. Chem. Commun., 158, 111509.
[34] Maged, A., Dissanayake, P.D., Yang, X., Pathirannahalage, C., Bhatnagar, A., and Ok, Y.S., 2021, New mechanistic insight into rapid adsorption of pharmaceuticals from water utilizing activated biochar, Environ. Res., 202, 111693.
[35] Nguyen, V.T., Nguyen, T.B., Vo, T.D.H., Dat, N.D., Vo, T.K.Q., Nguyen, X.C., Dinh, V.C., Le, T.N.C., Duong, T.G.H., Bui, M.H., and Bui, X.T., 2023, Preliminary study of doxycycline adsorption from aqueous solution on alkaline modified biochar derived from banana peel, Environ. Eng. Res., 29 (3), 230196.

Article Metrics



Copyright (c) 2025 Indonesian Journal of Chemistry

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.