Influence of NaOH Concentration on the Crystallization and Phase Development of Titanium Dioxide Derived from Titanium Slag via Hydrothermal Processing

Hoang Trung Ngon(1*), Phan Dinh Tuan(2), Kieu Do Trung Kien(3), Tran Anh Khoa(4), Truong Khanh Vi(5), Vo Ngoc Tuyet(6)
(1) Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 70000, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 70000, Vietnam
(2) Research Institute for Sustainable Development, Ho Chi Minh City University of Natural Resources and Environment, 236B Le Van Sy Street, Ward 1, Tan Binh District, Ho Chi Minh 70000, Vietnam
(3) Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 70000, Vietnam; Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 70000, Vietnam
(4) Faculty of Environment, Ho Chi Minh City University of Natural Resources and Environment, 236B Le Van Sy Street, Ward 1, Tan Binh District, Ho Chi Minh 70000, Vietnam
(5) Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 70000, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 70000, Vietnam
(6) Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 70000, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 70000, Vietnam
(*) Corresponding Author
Abstract
The hydrothermal method presents a promising approach for synthesizing high-quality rutile TiO2 pigments from titanium slag, utilizing controlled NaOH concentrations to modulate crystalline and morphological properties. This study examined the effects of varying NaOH concentrations on the crystallization and phase composition of TiO2 derived from titanium slag. Mixtures of titanium slag and NaOH underwent hydrothermal treatment at 200 °C for 18 h, and the resulting TiO2 samples were characterized using X-ray diffraction and scanning electron microscopy to evaluate phase composition and morphology. The results indicated that NaOH concentrations below 600 g/L promoted the formation of well-ordered, highly crystalline TiO2 with uniform crystal sizes. Conversely, higher NaOH concentrations increased the proportions of rutile and anatase phases, underscoring the significant impact of NaOH concentration on phase development. This study emphasizes the potential of the hydrothermal method in fine-tuning the properties of TiO2 for optimized pigment applications through adjustments in NaOH concentration.
Keywords
Full Text:
Full Text PDFReferences
[1] Kien, K.D.T., Minh, D.Q., Minh, H.N., and Nhi, N.V.U., 2025, Study on photocatalytic and antibacterial ability of TiO2 and TiO2-SiO2 coatings, J. Appl. Sci. Eng., 28 (3), 459–467.
[2] Kien, K.D.T., Minh, D.Q., Minh, H.N., and Nhi, N.V.U., 2023, Synthesis of TiO2-SiO2 from tetra-n-butyl orthotitanate and tetraethyl orthosilicate by the sol-gel method applied as a coating on the surface of ceramics, Ceram. -Silik., 67 (1), 58–63.
[3] Tolosana-Moranchel, A., Pecharromán, C., Faraldos, M., and Bahamonde, A., 2021, Strong effect of light scattering by distribution of TiO2 particle aggregates on photocatalytic efficiency in aqueous suspensions, Chem. Eng. J., 403, 126186.
[4] George, J., Gopalakrishnan, C.C., Manikuttan, P.K., Mukesh, K., and Sreenish, S., 2021, Preparation of multi-purpose TiO2 pigment with improved properties for coating applications, Powder Technol., 377, 269–273.
[5] Aviandharie, S.A., Aidha, N.N., Jati, B.N., Ermawati, R., and Cahyaningtyas, A.A., 2020, TiO2 purification from ilmenite the tin industry by-product for pigment, J. Phys.: Conf. Ser., 1503 (1), 012030.
[6] Barreiro, A.M., Pinheiro, G.K., Wesling, B.N., Müller, D., Scarabelot, L.T., de Souza, L.V., Hotza, D., and Rambo, C.R., 2020, Aerogel-based TiO2 stable inks for direct inkjet printing of nanostructured layers, Adv. Mater. Sci. Eng., 2020 (1), 4273097.
[7] Guo, Y., Liu, S., Jiang, T., Qiu, G., and Chen, F., 2014, A process for producing synthetic rutile from Panzhihua titanium slag, Hydrometallurgy, 147-148, 134–141.
[8] Gázquez, M.J., Bolívar, J.P., Garcia-Tenorio, R., and Vaca, F., 2014, A review of the production cycle of titanium dioxide pigment, Mater. Sci. Appl., 5 (7), 441–458.
[9] Boutillier, S., Fourmentin, S., and Laperche, B., 2022, History of titanium dioxide regulation as a food additive: A review, Environ. Chem. Lett., 20 (2), 1017–1033.
[10] Khoi, N.N., 2014, Mineral resources potential of Vietnam and current state of mining activity, Appl. Environ. Res., 36 (1), 37–46.
[11] Bessinger, D., Geldenhuis, J.M.A., Pistorius, P.C., Mulaba, A., and Hearne, G., 2001, The decrepitation of solidified high titania slags, J. Non-Cryst. Solids, 282 (1), 132–142.
[12] Thompson, R., 1981, Industrial inorganic chemistry, Annu. Rep. Prog. Chem., Sect. A: Inorg. Chem., 78, 333–360.
[13] Sampath, A.H.J., Wickramasinghe, N.D., de Silva, K.M.N., and de Silva, R.M., 2023, Methods of extracting TiO2 and other related compounds from ilmenite, Minerals, 13 (5), 662.
[14] Zhu, X., Zheng, S., Zhang, Y., Fang, Z.Z., Zhang, M., Sun, P., Li, Q., Zhang, Y., Li, P., and Jin, W., 2019, Potentially more ecofriendly chemical pathway for production of high-purity TiO2 from titanium slag, ACS Sustainable Chem. Eng., 7 (5), 4821–4830.
[15] Mohd Nor, A., Achoi, M.F., Mamat, M.H., Zabidi, M.M., Abdullah, S., and Mahmood, M.R., 2012, Synthesis of TiO2 nanowires via hydrothermal method, Jpn. J. Appl. Phys., 51 (6S), 06FG08.
[16] Hanum Lalasari, L., Firdiyono, F., Yuwono, A.H., Harjanto, S., and Suharno, B., 2012, Preparation, decomposition and characterizations of Bangka - Indonesia ilmenite (FeTiO3) derived by hydrothermal method using concentrated NaOH solution, Adv. Mater. Res., 535-537, 750–756.
[17] Gordienko, P.S., Dostovalov, V.A., and Pashnina, E.V., 2017, Hydrofluoride method of complex processing of titanium-containing raw materials, Solid State Phenom., 265, 542–547.
[18] López Zavala, M.Á., Lozano Morales, S.A., and Ávila-Santos, M., 2017, Synthesis of stable TiO2 nanotubes: Effect of hydrothermal treatment, acid washing and annealing temperature, Heliyon, 3 (11), e00456.
[19] Nada, A., Moustafa, Y., and Hamdy, A., 2014, Improvement of titanium dioxide nanotubes through study washing effect on hydrothermal, Br. J. Environ. Sci., 2 (4), 29–40.
[20] Wategaonkar, S.B., Pawar, R.P., Parale, V.G., Nade, D.P., Sargar, B.M., and Mane, R.K., 2020, Synthesis of rutile TiO2 nanostructures by single step hydrothermal route and its characterization, Mater. Today: Proc., 23 (2), 444–451.
[21] Shi, Z., Sun, L., Liu, K., Zhang, Y., Wang, W., and Jiang, W., 2019, Two‐step hydrothermal synthesis of well‐dispersed (Na0.5Bi0.5)TiO3 spherical powders, J. Nanomater., 2019 (1), 4768069.
[22] Gou, H.P., Zhang, G.H., and Chou, K.C., 2015, Influence of pre-oxidation on carbothermic reduction process of ilmenite concentrate, ISIJ Int., 55 (5), 928–933.
[23] Lv, W., Lv, X., Xiang, J., Wang, J., Lv, X., Bai, C., and Song, B., 2017, Effect of pre-oxidation on the carbothermic reduction of ilmenite concentrate powder, Int. J. Miner. Process., 169, 176–184.
[24] Wang, X., Tan, W., Guo, K., Ji, J., Gao, F., Tong, Q., and Dong, L., 2021, Evaluation of manganese oxide octahedral molecular sieves for CO and C3H6 oxidation at diesel exhaust conditions, Front. Environ. Chem., 2, 672250.
[25] Zenou, V.Y., and Bakardjieva, S., 2018, Microstructural analysis of undoped and moderately Sc-doped TiO2 anatase nanoparticles using Scherrer equation and Debye function analysis, Mater. Charact., 144, 289–296.
[26] Ghadiry, M., Gholami, M., Lai, C.K., Ahmad, H., and Chong, W.Y., 2016, Ultra-sensitive humidity sensor based on optical properties of graphene oxide and nano-anatase TiO2, PLoS One, 11 (4), e0153949.
[27] El-Desoky, M.M., Morad, I., Wasfy, M.H., and Mansour, A.F., 2020, Synthesis, structural and electrical properties of PVA/TiO2 nanocomposite films with different TiO2 phases prepared by sol–gel technique, J. Mater. Sci.: Mater. Electron., 31 (20), 17574–17584.
[28] Pal, M., Garcia Serrano, J., Santiago, P., and Pal, U., 2007, Size-controlled synthesis of spherical TiO2 nanoparticles: Morphology, crystallization, and phase transition, J. Phys. Chem. C, 111 (1), 96–102.
[29] Bavykin, D.V., Parmon, V.N., Lapkin, A.A., and Walsh, F.C, 2004, The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes, J. Mater. Chem., 14 (22), 3370–3377.
[30] Cheng, H., Ma, J., Zhao, Z., and Qi, L., 1995, Hydrothermal preparation of uniform nanosize rutile and anatase particles, Chem. Mater., 7 (4), 663–671.
[31] Xie, Z., Meng, Q., Hu, Y., Tang, Y., Wang, K., Zhang, Y., Yu, X., Zhao, K., and Xu, C., 2024, Amorphous titanium dioxide with abundant defects induced by incorporation of silicon dioxide: A potential non-radical activator of hydrogen peroxide, J. Colloid Interface Sci., 653 (Part B), 1006–1017.
[32] Leyva-Porras, C., Toxqui-Teran, A., Vega-Becerra, O., Miki-Yoshida, M., Rojas-Villalobos, M., García-Guaderrama, M., and Aguilar-Martínez, J.A., 2015, Low-temperature synthesis and characterization of anatase TiO2 nanoparticles by an acid assisted sol–gel method, J. Alloys Compd., 647, 627–636.
[33] Sikhwivhilu, L.M., Sinha Ray, S., and Coville, N.J., 2009, Influence of bases on hydrothermal synthesis of titanate nanostructures, Appl. Phys. A, 94 (4), 963–973.
[34] Liu, W., Lü, L, Yue, H., Liang, B., and Li, C., 2017, Combined production of synthetic rutile in the sulfate TiO2 process, J. Alloys Compd., 705, 572–580.

Article Metrics


Copyright (c) 2025 Indonesian Journal of Chemistry

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.