Unlocking the Potential of Papuan Red Fruit (Pandanus conoideus Lamk): A Comprehensive Exploration of Its Role in COVID-19 Inhibition Through Molecular Docking and Molecular Dynamics Simulation

Agus Dwi Ananto(1*), Harno Dwi Pranowo(2), Winarto Haryadi(3), Niko Prasetyo(4)
(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia; Department of Pharmacy, Faculty of Medicine and Health Science, Universitas Mataram, Jl. Majapahit No. 62, Mataram 83115, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(*) Corresponding Author
Abstract
Keywords
Full Text:
Full Text PDFReferences
[1] Fajriyah, N.N., Mugiyanto, E., Rahmasari, K.S., Nur, A.V., Najihah, V.H., Wihadi, M.N.K., Merzouki, M., Challioui, A., and Vo, T.H., 2023, Indonesia Herbal medicine and its active compounds for antidiabetic treatment: A systematic mini review, Moroccan J. Chem., 11 (4), 948–964.
[2] Estiasih, T., Maligan, J.M., Witoyo, J.E., Mu’alim, A.A.H., Ahmadi, K., Mahatmanto, T., and Zubaidah, E., 2025, Indonesian traditional herbal drinks: Diversity, processing, and health benefits, J. Ethnic Foods, 12 (1), 7.
[3] Liu, C.X., 2021, Overview on development of ASEAN traditional and herbal medicines, Chin. Herb. Med., 13 (4), 441–450.
[4] Becker, M.M., Nunes, G.S., Ribeiro, D.B., Silva, F.E.P.S., Catanante, G., and Marty, J.L., 2019, Determination of the antioxidant capacity of red fruits by miniaturized spectrophotometry assays, J. Braz. Chem. Soc., 30 (5), 1108–1114.
[5] Purbaya, S., Aisyah, L.S., and Nopitasari, D., 2020, The effectiveness of adding red fruit oil (Pandanus conoideus Lamk.) into ethanol extract of temulawak rhizome (Curcuma xanthorrhiza Roxb.) as antioxidant, J. Kim. Sains Apl., 23 (11), 409–413.
[6] Herdiyati, Y., Atmaja, H.E., Satari, M.H., and Kurnia, D., 2024, Potential antibacterial flavonoid from buah merah (Pandanus conoideus Lam.) against pathogenic oral bacteria of Enterococcus faecalis ATCC 29212, Open Dent. J., 14, 433–439.
[7] Achadiani, A., Sastramihardja, H., Akbar, I.B., Hernowo, B.S., Faried, A., and Kuwano, H., 2013, Buah merah (Pandanus conoideus Lam.) from Indonesian herbal medicine induced apoptosis on human cervical cancer cell lines, Obes. Res. Clin. Pract., 7 (Suppl. 1), 31–32.
[8] Anggadiredja, K., Lestari, I.T., Garmana, A.N., and Utami, R.A., 2025, Anti diabetic peripheral neuropathy of red fruit (Pandanus conoides Lamk) oil in a rat model: Involvement of oxidative and neuroinflammatory pathways, Int. J. Neuropsychopharmacol., 28 (Suppl. 1), i237–i238.
[9] Tambaip, T., Br Karo, M., Hatta, M., Dwiyanti, R., Natzir, R., Massi, M.N., Asadul Islam, A., and Djawad, K., 2018, Immunomodulatory effect of orally red fruit (Pandanus conoideus) extract on the expression of CC chemokine receptor 5 mRNA in HIV patients with antiretroviral therapy, Res. J. Immunol., 11 (1), 15–21.
[10] Tambunan, I.W., Gunawan, E., and Pratiwi, R.D., 2023, Antibacterial activity test of yoghurt paste red fruit (Pandanus conoideus Lam.) against Escherichia coli, J. Pharmacol. Res. Dev., 5 (1), 19–27.
[11] World Health Organization, 2024, COVID-19 Epidemiological Update – 15 March 2024, https://www.who.int/publications/m/item/covid-19-epidemiological-update-15-march-2024.
[12] Kandeel, M., Abdelrahman, A.H.M., Oh-Hashi, K., Ibrahim, A., Venugopala, K.N., Morsy, M.A., and Ibrahim, M.A.A., 2021, Repurposing of FDA-approved antivirals, antibiotics, anthelmintics, antioxidants, and cell protectives against SARS-CoV-2 papain-like protease, J. Biomol. Struct. Dyn., 39 (14), 5129–5136.
[13] Pang, J., Gao, S., Sun, Z., and Yang, G., 2021, Discovery of small molecule PLpro inhibitor against COVID-19 using structure-based virtual screening, molecular dynamics simulation, and molecular mechanics/generalized born surface area (MM/GBSA) calculation, Struct. Chem., 32 (2), 879–886.
[14] Rizzuti, B., Grande, F., Conforti, F., Jimenez-Alesanco, A., Ceballos-Laita, L., Ortega-Alarcon, D., Vega, S., Reyburn, H.T., Abian, O., and Velazquez-Campoy, A., 2021, Rutin is a low micromolar inhibitor of SARS-CoV-2 main protease 3CLpro: Implications for drug design of quercetin analogs, Biomedicines, 9 (4), 375.
[15] Kashyap, P., Thakur, M., Singh, N., Shikha, D., Kumar, S., Baniwal, P., Yadav, Y.S., Sharma, M., Sridhar, K., and Inbaraj, B.S., 2022, In silico evaluation of natural flavonoids as a potential inhibitor of coronavirus disease, Molecules, 27 (19), 6374.
[16] Pinzi, L., and Rastelli, G., 2019, Molecular docking: Shifting paradigms in drug discovery, Int. J. Mol. Sci., 20 (18), 4331.
[17] Rahman, M.M., Islam, M.R., Akash, S., Mim, S.A., Rahaman, M.S., Emran, T.B., Akkol, E.K., Sharma, R., Alhumaydhi, F.A., Sweilam, S.H., Hossain, M.E., Ray, T.K., Sultana, S., Ahmed, M., Sobarzo-Sánchez, E., and Wilairatana, P., 2022, In silico investigation and potential therapeutic approaches of natural products for COVID-19: Computer-aided drug design perspective, Front. Cell. Infect. Microbiol., 12, 929430.
[18] Masone, D., and Grosdidier, S., 2014, Collective variable driven molecular dynamics to improve protein–protein docking scoring, Comput. Biol. Chem., 49, 1–6.
[19] Childers, M.C., and Daggett, V., 2017, Insights from molecular dynamics simulations for computational protein design, Mol. Syst. Des. Eng., 2 (1), 9–33.
[20] Krieger, E., Koraimann, G., and Vriend, G., 2002, Increasing the precision of comparative models with YASARA NOVA—A self-parameterizing force field, Proteins: Struct., Funct., Bioinf., 47 (3), 393–402.
[21] BIOVIA, Dassault Systèmes, 2020, Discovery Studio Visualizer ver. 21.1.0.20298, Dassault Systèmes, San Diego, US.
[22] Osipiuk, J., Azizi, S.A., Dvorkin, S., Endres, M., Jedrzejczak, R., Jones, K.A., Kang, S., Kathayat, R.S., Kim, Y., Lisnyak, V.G., Maki, S.L., Nicolaescu, V., Taylor, C.A., Tesar, C., Zhang, Y.A., Zhou, Z., Randall, G., Michalska, K., Snyder, S.A., Dickinson, B.C., and Joachimiak, A., 2021, Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors, Nat. Commun., 12 (1), 743.
[23] Suprijono, M.M., Widjanarko, S.B., Sujuti, H., and Kurnia, D., 2019, Computational study of antioxidant activity and bioavailability of papua red fruit (Pandanus conoideus Lam.) flavonoids through docking toward human serum albumin, AIP Conf. Proc., 2108 (1), 020020.
[24] Heriyanto, H., Gunawan, I.A., Fujii, R., Maoka, T., Shioi, Y., Kameubun, K.M.B., Limantara, L., and Brotosudarmo, T.H.P., 2021, Carotenoid composition in buah merah (Pandanus conoideus Lam.), an indigenous red fruit of the Papua Islands, J. Food Compos. Anal., 96, 103722.
[25] Nugraha, G., and Istyastono, E.P., 2021, Virtual target construction for structure-based screening in the discovery of histamine H2 receptor ligands, Int. J. Appl. Pharm., 13 (3), 239–241.
[26] Nugraha, G., Pranowo, H.D., Mudasir, M., and Istyastono, E.P., 2022, Virtual target construction for discovery of human histamine H4 receptor ligands employing a structure-based virtual screening approach, Int. J. Appl. Pharm., 14 (4), 213–218.
[27] Lengauer, T., and Rarey, M., 1996, Computational methods for biomolecular docking, Curr. Opin. Struct. Biol., 6 (3), 402–406.
[28] Nurhidayah, M., Fadilah, F., Arsianti, A., and Bahtiar, A., 2022, Identification of FGFR inhibitor as ST2 receptor/interleukin-1 receptor-like 1 inhibitor in chronic obstructive pulmonary disease due to exposure to E-cigarettes by network pharmacology and a molecular docking prediction, Int. J. Appl. Pharm, 14 (2), 256–266.
[29] Stasiulewicz, A., Maksymiuk, A.W., Nguyen, M.L., Bełza, B., and Sulkowska, J.I., 2021, SARS-CoV-2 papain-like protease potential inhibitors—In silico quantitative assessment, Int. J. Mol. Sci., 22 (8), 3957.
[30] Kleem, T., Ebert, G., Calleja, D.J., Allison, C.C., Richardson, L.W., Bernardini, J.P., Lu, B.G.C., Kuchel, N.W., Grohmann, C., Shibata, Y., Gan, Z.Y., Cooney, J.P., Doerflinger, M., Au, A.E., Blackmore, T.R., van der Heden van Noort, G.J., Geurink, P.P., Ovaa, H., Newman, J., Riboldi‐Tunnicliffe, A., Czabotar, P.E., Mitchell, J.P., Feltham, R., Lechtenberg, B.C., Lowes, K.N., Dewson, G., Pellegrini, M., Lessene, G., and Komander, D., 2020, Mechanism and inhibition of the papain‐like protease, PLpro, of SARS‐CoV‐2, EMBO J., 39 (18), e106275.
[31] Ananto, A.D., Pranowo, H.D., Haryadi, W., and Prasetyo, N., 2024, Flavonoid compound of red fruit Papua and its derivatives against SARS-CoV-2 Mpro: An in silico approach. J. Appl. Pharm. Sci., 14 (12), 90–97.
[32] Calleja, D.J., Lessene, G., and Komander, D., 2022, Inhibitors of SARS-CoV-2 PLpro, Front. Chem., 10, 876212.
[33] Gao, X., Qin, B., Chen, P., Zhu, K., Hou, P., Wojdyla, J.A., Wang, M., and Cui, S., 2020, Crystal structure of SARS-CoV-2 papain-like protease, Acta Pharm. Sin. B, 11 (1), 237–245.
[34] Meng, X.Y., Zhang, H.X., Mezei, M., and Cui, M., 2011, Molecular docking: A powerful approach for structure-based drug discovery, Curr. Comput.-Aided Drug Des., 7 (2), 146–157.
[35] Barratt, E., Bingham, R.J., Warner, D.J., Laughton, C.A., Phillips, S.E.V., and Homans, S.W., 2005, Van der Waals interactions dominate ligand protein association in a protein binding site occluded from solvent water, J. Am. Chem. Soc., 127 (33), 11827–11834.
[36] Zhang, Q.Y., and Aires-de-Sousa, J., 2007, Random forest prediction of mutagenicity from empirical physicochemical descriptors, J. Chem. Inf. Model., 47 (1), 1–8.
[37] Chaudhary, N., and Aparoy, P., 2017, Deciphering the mechanism behind the varied binding activities of COXIBs through Molecular Dynamic Simulations, MM-PBSA binding energy calculations and per-residue energy decomposition studies, J. Biomol. Struct. Dyn., 35 (4), 868–882.
Article Metrics


Copyright (c) 2025 Indonesian Journal of Chemistry

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.