Studying the Extraction Conditions on Rosmarinic Acid Content and Antioxidant Activity of Basil (Ocimum basilicum L.)

https://doi.org/10.22146/ijc.99415

Anh Giang Que Pham(1), Tram Thi My Pham(2*)

(1) Institute of Engineering and Technology, Thu Dau Mot University, Tran Van On Street No. 6, Binh Duong 820000, Vietnam
(2) Institute of Engineering and Technology, Thu Dau Mot University, Tran Van On Street No. 6, Binh Duong 820000, Vietnam
(*) Corresponding Author

Abstract


Basil (Ocimum basilicum L.), a popular herbal plant, is known for its ornamental and therapeutic importance. It has been described as having antioxidant, anti-inflammatory, hepatoprotective, immunomodulatory, antihyperglycemic, and antimicrobial properties. This study aimed to evaluate the effects of some factors on the rosmarinic acid concentration and antioxidant activity of basil extract, such as samples, solvents (water and 50% ethanol), solvent-to-sample ratios (from 1:20 to 1:70 g/mL), extraction temperature (70, 90, and 110 °C), and extraction time (30, 60, 90, and 120 min). Rosmarinic acid content was analyzed using the spectrophotometry method. The DPPH free radical scavenging experiment was also used to assess the extracts' antioxidant potential. The results showed that with the dried leaves, the ratio between the sample and 50% ethanol was 1:40 g/mL, extraction temperature of 90 °C, and extraction time of 60 min were the best conditions for obtaining rosmarinic acid from basil. The quantitative result also showed that basil extracts had a lot of polyphenols (dark green precipitate) and flavonoids (yellow precipitate). In addition, basil leaves had antioxidant properties with an IC50 value of 3103.18 μg/mL. These findings showed that basil extract may be an important source of antioxidant compounds, such as rosmarinic acid.

Keywords


antioxidant; basil; extract; Ocimum basilicum L.; rosmarinic acid

Full Text:

Full Text PDF


References

[1] Olugbami, J.O., Gbadegesin, M.A., and Odunola, O.A., 2015, In vitro free radical scavenging and antioxidant properties of ethanol extract of Terminalia glaucescens, Pharmacogn. Res., 7 (1), 49–56.

[2] Tzima, K., Brunton, N.P., and Rai, D.K., 2018, Qualitative and quantitative analysis of polyphenols in Lamiaceae plants—A review, Plants, 7 (2), 25.

[3] Teofilović, B., Grujić-Letić, N., Karadžić, M., Kovačević, S., Podunavac-Kuzmanović, S., Gligorić, E., and Gadžurić, S., 2021, Analysis of functional ingredients and composition of Ocimum basilicum, S. Afr. J. Bot., 141, 227–234.

[4] Filip, S., 2017, Basil (Ocimum basilicum L.) a source of valuable phytonutrients, Int. J. Clin. Nutr. Diet., 3, 118.

[5] Güez, C.M., de Souza, R.O., Fischer, P., de Maura Leão, M.F., Duarte, J.A., Boligon, A.A., Athayde, M.L., Zuravski, L., de Oliveira, L.F.S., and Machado, M.M., 2017, Evaluation of basil extract (Ocimum basilicum L.) on oxidative, anti-genotoxic and anti-inflammatory effects in human leukocytes cell cultures exposed to challenging agents, Braz. J. Pharm. Sci., 53 (1), e15098.

[6] Kalita, M., and Devi, N., 2023, A taxonomic review of the genus Ocimum L. (Ocimeae, Lamiaceae), Plant Sci. Today, 10 (sp2), 126–137.

[7] Sęczyk, Ł., and Kołodziej, B., 2024, Bioaccessibility of rosmarinic acid and basil (Ocimum basilicum L.) co-compounds in a simulated digestion model—The influence of the endogenous plant matrix, dose of administration and physicochemical and biochemical digestion environment, Molecules, 29 (4), 901.

[8] Shahrajabian, M.H., Sun, W., and Cheng, Q., 2020, Chemical components and pharmacological benefits of basil (Ocimum basilicum): A review, Int. J. Food Prop., 23 (1), 1961–1970.

[9] Hanh, D.T.B., Ngu, T.N., Bao, P.H.T., Vy, T.N.T., Dung, N.T.V., My, D.T.T., Loan, L.T.T., Lam, D.T., Nguyen, P.H., Khanh, N.P., and To, D.C., 2023, Chemical composition and biological activities of essential oil from Ocimum basilicum L. collected in Dak Lak, Vietnam, Trop. J. Nat. Prod. Res., 7 (9), 4032–4037.

[10] Nassar, M.A., El-Segai, M.U., and Mohamed, S.N., 2013, Botanical studies on Ocimum basilicum L. (Lamiaceae), Res. J. Agric. Biol. Sci., 9 (5), 150–163.

[11] Tran, T.H., Nguyen, H.H.H., Nguyen, D.C., Nguyen, T.Q., Tan, H., Nhan, L.T.H., Nguyen, D.H., Tran, L.D., Do, S.T., and Nguyen, T.D., 2018, Optimization of microwave-assisted extraction of essential oil from Vietnamese basil (Ocimum basilicum L.) using response surface methodology, Processes, 6 (11), 206.

[12] Aloisio, C., Razola-Díaz, M.D.C., Aznar-Ramos, M.J., Longhi, M.R., Andreatta, A.E., and Verardo, V., 2023, Optimization of the extraction conditions of bioactive compounds from Ocimum basilicum leaves using ultrasound-assisted extraction via a sonotrode, Molecules, 28 (13), 5286.

[13] Romano, R., De Luca, L., Aiello, A., Pagano, R., Di Pierro, P., Pizzolongo, F., and Masi, P., 2022, Basil (Ocimum basilicum L.) leaves as a source of bioactive compounds, Foods, 11 (20), 3212.

[14] Hasham, R., Maniarasu, N., Jemon, K., Abd Latif, N., and Bahari, H., 2023, A review on rosmarinic acid rich extract for skin regeneration through rapamycin signaling pathway, Chem. Nat. Resour. Eng. J., 7 (1), 1–9.

[15] Nadeem, M., Imran, M., Aslam Gondal, T., Imran, A., Shahbaz, M., Muhammad Amir, R., Wasim Sajid, M., Batool Qaisrani, T., Atif, M., Hussain, G., Salehi, B., Adrian Ostrander, E., Martorell, M., Sharifi-Rad, J., Cho, W.C., and Martins, N., 2019, Therapeutic potential of rosmarinic acid: A comprehensive review, Appl. Sci., 9 (15), 3139.

[16] Vatankhah, E., 2018, Rosmarinic acid‐loaded electrospun nanofibers: In vitro release kinetic study and bioactivity assessment, Eng. Life Sci., 18 (10), 732–742.

[17] Trócsányi, E., György, Z., and Zámboriné-Németh, E., 2020, New insights into rosmarinic acid biosynthesis based on molecular studies, Curr. Plant Biol., 23, 100162.

[18] Sik, B., Kapcsándi, V., Székelyhidi, R., Hanczné, E.L., and Ajtony, Z., 2019, Recent advances in the analysis of rosmarinic acid from herbs in the Lamiaceae family, Nat. Prod. Commun., 14 (7), 1-10.

[19] Touiss, I., Harnafi, M., Khatib, S., Bekkouch, O., Ouguerram, K., Amrani, S., and Harnafi, H., 2019, Rosmarinic acid-rich extract from Ocimum basilicum L. decreases hyperlipidemia in high fat diet-induced hyperlipidemic mice and prevents plasma lipid oxidation, Physiol. Pharmacol., 23 (3), 197–207.

[20] Sahraroo, A., Babalar, M., Mirjalili, M.H., Fattahi Moghaddam, M.R., and Nejad Ebrahimi, S., 2014, In vitro callus induction and rosmarinic acid quantification in callus culture of Satureja khuzistanica Jamzad (Lamiaceae), Iran. J. Pharm. Res., 13 (4), 1447–1456.

[21] Adam, G., Robu, S., Flutur, M.M., Cioanca, O., Vasilache, I.A., Adam, A.M., Mircea, C., Nechita, A., Harabor, V., Harabor, A.M., and Hancianu, M., 2023, Applications of Perilla frutescens extracts in clinical practice, Antioxidants, 12 (3), 727.

[22] Cedeño-Pinos, C., Martínez-Tomé, M., Murcia, M.A., Jordán, M.J., and Bañón, S., 2020, Assessment of rosemary (Rosmarinus officinalis L.) extract as antioxidant in jelly candies made with fructan fibres and stevia, Antioxidants, 9 (12), 1289.

[23] Dahiya, D., Terpou, A., Dasenaki, M., and Nigam, P.S., 2023, Current status and future prospects of bioactive molecules delivered through sustainable encapsulation techniques for food fortification, Sustainable Food Technol., 1 (4), 500–510.

[24] Dent, M., Dragović-Uzelac, V., Penić, M., Bosiljkov, T., and Levaj, B., 2013, The effect of extraction solvents, temperature and time on the composition and mass fraction of polyphenols in dalmatian wild sage (Salvia officinalis L.) extracts, Food Technol. Biotechnol., 51 (1), 84–91.

[25] Saxena, R., Sharma, R., Nandy, B.C., and Jasuja, N.D., 2014, Qualitative and quantitative estimation of bioactive compounds in Mimosa hamata, Int. J. Pharm. Pharm. Sci., 6 (6), 72–75.

[26] Öztürk, M., Duru, M.E., İnce, B., Harmandar, M., and Topçu, G., 2010, A new rapid spectrophotometric method to determine the rosmarinic acid level in plant extracts, Food Chem., 123 (4), 1352–1356.

[27] Marinova, G., and Batchvarov, V., 2011, Evaluation of the methods for determination of the free radical scavenging activity by DPPH, Bulg. J. Agric. Sci., 17 (1), 11–24.

[28] Nguyen, V.T., Nguyen, N.Q., Thi, N.Q.N., Thi, C.Q.N., Truc, T.T., and Nghi, P.T.B., 2021, Studies on chemical, polyphenol content, flavonoid content, and antioxidant activity of sweet basil leaves (Ocimum basilicum L.), IOP Conf. Ser.: Mater. Sci. Eng., 1092 (1), 012083.

[29] Ijaz, S., Iqbal, J., Abbasi, B.A., Ullah, Z., Yaseen, T., Kanwal, S., Mahmood, T., Sydykbayeva, S., Ydyrys, A., Almarhoon, Z.M., Sharifi-Rad, J., Hano, C., Calina, D., and Cho, W.C., 2023, Rosmarinic acid and its derivatives: Current insights on anticancer potential and other biomedical applications, Biomed. Pharmacother., 162, 114687.

[30] Song, T.E., Moon, J.K., and Lee, C.H., 2020, Polyphenol content and essential oil composition of sweet basil cultured in a plant factory with light-emitting diodes, Hortic. Sci. Technol., 38 (5), 620–630.

[31] Lee, J., and Scagel, C.F., 2009, Chicoric acid found in basil (Ocimum basilicum L.) leaves, Food Chem., 115 (2), 650–656.

[32] Kwon, D.Y., Li, X., Kim, J.K., and Park, S.U., 2019, Molecular cloning and characterization of rosmarinic acid biosynthetic genes and rosmarinic acid accumulation in Ocimum basilicum L., Saudi J. Biol. Sci., 26 (3), 469–472.

[33] Rajbhar, K., Dawda, H., and Mukundan, U., 2015, Polyphenols: Methods of extraction, Sci. Rev. Chem. Commun., 5 (1), 1–6.

[34] Chaowuttikul, C., Palanuvej, C., and Ruangrungsi, N., 2020, Quantification of chlorogenic acid, rosmarinic acid, and caffeic acid contents in selected Thai medicinal plants using RP-HPLC-DAD, Braz. J. Pharm. Sci., 56, e17547.

[35] Al-Farsi, M.A., and Lee, C.Y., 2008, Optimization of phenolics and dietary fibre extraction from date seeds, Food Chem., 108 (3), 977–985.

[36] Atanasova, A., Petrova, A., Teneva, D., Ognyanov, M., Georgiev, Y., Nenov, N., and Denev, P., 2023, Subcritical water extraction of rosmarinic acid from lemon balm (Melissa officinalis L.) and its effect on plant cell wall constituents, Antioxidants, 12 (4), 888.

[37] Hong, E., and Kim, G.H., 2010, Comparison of extraction conditions for phenolic, flavonoid content and determination of rosmarinic acid from Perilla frutescens var. acuta, Int. J. Food Sci. Technol., 45 (7), 1353–1359.

[38] Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R.P., and Chang, C.M., 2022, Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa, Molecules, 27 (4), 1326.

[39] Nguyen, Q.V., and Eun, J.B., 2011, Antioxidant activity of solvent extracts from Vietnamese medicinal plants, J. Med. Plant Res., 5 (13), 2798–2811.

[40] Coelho, J., Veiga, J., Karmali, A., Nicolai, M., Pinto Reis, C., Nobre, B., and Palavra, A., 2018, Supercritical CO2 extracts and volatile oil of basil (Ocimum basilicum L.) comparison with conventional methods, Separations, 5 (2), 21.



DOI: https://doi.org/10.22146/ijc.99415

Article Metrics

Abstract views : 250 | views : 90


Copyright (c) 2025 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.