Kinetic Study of Fulvate Complex Dissolution of Fe, Mn, Zn, Cu, Ni, and Mo from Hydrolyzed Rice Hush Ash Composite (CSH) and Evaluation of Its Performance in Increasing Essential Micronutrient Content in Cempo Merah and Cempo Putih Rice

https://doi.org/10.22146/ijc.98791

Agus Kuncaka(1*), Andika Rifqi Rayendra(2), Dilla Karuniawati(3), Rifka Ayu Kurniawati(4), Dwi Siswanta(5), Mudasir Mudasir(6), Adhitasari Suratman(7)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(6) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(7) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(*) Corresponding Author

Abstract


This study aimed to make humic composite (CSH), a humus-like material that serves as synthetic humus, that can function as a source of micronutrients in the soil and carry micronutrients to plants through the formed fulvate complex. Qualitative analysis of the micronutrient content of Fe, Mn, Zn, Cu, Ni, and Mo had been carried out using EDX, XRF and ESR spectroscopies, while quantitative analysis was carried out through atomic absorption spectrometry and UV-vis spectrophotometry of fulvic acid and humic acid in CSH. Quantitative analysis was carried out to determine micronutrient content in composite and rice samples using AAS. The results showed that the micronutrient content of Fe, Mn, Zn, Cu, Ni, and Mo in Cempo Putih and Cempo Merah rice applied with CSH was significantly higher compared to commercial rice. The desorption test of Fe, Mn, Zn, Cu, Ni, and Mo from the composite at various pH showed that the optimum pH for desorption occurred at pH 5. The desorption kinetics of Fe, Mn, Zn, Cu, Ni, and Mo from the composite followed a pseudo-second-order kinetic model. Analysis ESR showed that the paramagnetic fulvate complexes detected were only Fe complexes and Mn complexes.

Keywords


synthetic humus; fulvate complexes; kinetics; desorption; essential micronutrients

Full Text:

Full Text PDF


References

[1] BPS-Statistics Indonesia, 2023, Proyeksi Penduduk Indonesia 2020-2050, Hasil Sensus Penduduk 2020, Badan Pusat Satistik, Jakarta, Indonesia.

[2] Junias, M.S., Ndoen, E.M., Sudarmaji, C.S.V., and Lona, A.A., 2024, Pemberdayaan masyarakat sebagai upaya mitigasi lingkungan dalam penurunan angka stunting di wilayah kepulauan Semiringkai, PengabdianMu: J. Ilmiah Pengabdian Masyarakat, 9 (1), 132–139.

[3] Hatijar, H., 2023, Angka kejadian stunting pada bayi dan balita, JIKSH, 12 (1), 224–229.

[4] Maulidiananda, W., 2024, Pengaruh kondisi ekonomi orang tua terhadap terjadinya stunting pada anak di posyandu teratai Kebonagung Kota Pasuruan, Neraca: Jurnal Ekonomi, Manajemen dan Akuntansi, 2 (2), 171–180.

[5] Dimkpa, C.O., and Bindraban, P.S., 2016, Fortification of micronutrients for efficient agronomic production: A review, Agron. Sustainable Dev., 36 (1), 7.

[6] Ahmed, N., Zhang, B., Chachar, Z, Li, J., Xiao, G., Wang, Q., Hayat, F., Deng, L., Narejo, M.N., Bozdar, B., and Tu, P., 2024 Micronutrients and their effects on horticultural crop quality, productivity and sustainability, Sci. Hortic., 323, 112512.

[7] Chrysargyris, A., Höfte, M., Tzortzakis, N., Petropoulos, S.A., and Di Gioia, F., 2022, Editorial: Micronutrients: The borderline between their beneficial role and toxicity in plants, Front. Plant Sci., 13, 840624.

[8] Imtiaz, M., Rashid, A., Khan, P., Memon, M.Y., and Aslam, M., 2010, The role of micronutrients in crop production and human health, Pak. J. Bot., 42 (4), 2565–2578.

[9] Rout, G.R., and Sahoo, S., 2015, Role of iron in plant growth and metabolism, Rev. Agric. Sci., 3, 1–24.

[10] Alejandro, S., Höller, S., Meier, B., and Peiter, E., 2020, Manganese in plants: From acquisition to subceluller allocation, Front. Plant Sci., 11, 00300.

[11] Li, L., and Yang, X., 2018, The essential element manganese, oxidative stress, and metabolic diseases: Links and interactions, Oxid. Med. Cell. Longevity, 2018 (1), 7580707.

[12] Hacisalihoglu, G., 2020, Zinc (Zn): The last nutrient in the alphabet and shedding light on Zn efficiency for the future of crop production under suboptimal Zn, Plants, 9 (11), 1471.

[13] Bost, M., Houdart, S., Oberli, M., Kalonji, E., Juneau, J.F., and Margaritis, E., 2016, Dietary copper and human health: Current evidence and unresolved issues, J. Trace Elem. Med. Biol., 35, 107–115.

[14] Zhang, C., Lu, W., Yang, Y., Shen, Z., Ma, J.F., and Zheng, L., 2018, OsYSL16 is required for preferential Cu distribution to floral organs in rice, Plant Cell Physiol., 59 (10), 2039–2051.

[15] Sheng, H., Jiang, Y., Rahmati, M., Chia, J.C., Dokuchayeva, T., Kavulych, Y., Zavodna, T.O., Mendoza, P.N., Huang, R., Smieshka, J., Miller, J., Woll, A.R., Terek, O.I., Romanyuk, N.D., Piñeros, M., Zhou, Y., and Vatamaniuk, O.K., 2021, YSL3-mediated copper distribution is required for fertility, seed size and protein accumulation in Brachypodium, Plant Physiol., 186 (1), 655–676.

[16] Gong, X.R., Zhang, S.N., Ye, L.N., Luo, J.J., and Zhang, C., 2023, Cross talk between Cu excess and Fe deficiency in the roots of rice, Gene, 874, 147491.

[17] Liu, G., Simonne, E.H., and Li, Y., 2024, Nickel Nutrition in Plants, Horticultural Sciences Document HS1191, Institute of Food and Agricultural Sciences, University of Florida, https://edis.ifas.ufl.edu/publication/HS1191.

[18] Shivay, Y.S., and Prasad, R., 2019, Nickel in environment and plant nutrition: A mini review, Int. J. Plant Environ., 5 (4), 239–242.

[19] Cicconi, F., Ubaldini, A., Fiore, A., Rizzo, A., Cataldo, S., Agostini, P., Pietropaolo, A., Salvi, S., Cuzzola, V., and on behalf of the SRF Collaboration, 2023, Dissolution of molybdenum in hydrogen peroxide: A thermodynamic, kinetic and microscopic study of a green process for 99mTc production, Molecules, 28 (5), 2090.

[20] Šmejkalová, D., and Piccolo, A., 2008, Host-guest interactions between 2,4 dichlorophenol and humic substances as evaluated by 1H NMR relaxation and diffusion ordered spectroscopy, Environ. Sci. Technol., 42 (22), 8440–8445.

[21] Kuncaka, A., 2014, Metode Memproduksi Pupuk Organik Paramagnetik Pelepasan Lambat dan Produknya, Indonesian Patent, P00201401530.

[22] Zhao, B., Wang, Y., Sun, H., and Xhu, Z., 2022, Analysis of humus formation and factors for driving the humification process during composting of different agricultural wastes, Front. Environ. Sci., 10, 954158.

[23] Tan, K.H., 2014, Humic Matter in Soil and the Environment: Principles and Controversies, 2nd Ed., CRC Press, Boca Raton, Florida, US.

[24] Hayes, M.H., Swift, R.S., Byrnè, C.M., and Simpson, A.J., 2010, The Isolation and Characterization of Humic Substances and Humin from Grey Brown Podzolic and Gley Grassland Soils, Proceedings of the 19th World Congress of Soil Science: Soil solutions for a changing world, Brisbane, Australia, 1-6 August 2010.

[25] Lehmann, J., 2009, “Terra Preta de Indio” in Encyclopedia of Soil Science, Taylor & Francis, Abingdon, UK, 1–4.

[26] Chaturvedi, V., Agrawal, K., and Verma, P., 2021, Chicken feathers: A treasure cove of useful metabolites and value-added products, Environ. Sustainability, 4 (2), 231–243.

[27] Bhari, R., Kaur, M., and Sarup Singh, R., 2021, Chicken feather waste hydrolysate as a superior biofertilizer in agroindustry, Curr. Microbiol., 78 (6), 2212–2230.

[28] Tamreihao, K., Mukherjee, S., Khunjamayum, R., Devi, L.J., Asem, R.S., and Ningthoujam, D.S., 2019, Feather degradation by keratinolytic bacteria and biofertilizing potential for sustainable agricultural production, J. Basic Microbiol., 59 (1), 4–13.

[29] Kuncaka, A., Supardi, W.T., Haryadi, W., Suratman, A., and Priatmoko, P., 2023, Enhancing the amino acid and reducing the metal ions contents in the hydrolysate resulting from hydrothermal carbonization of chicken feather waste by chemical phosphorylation, Indones. J. Chem., 23 (1), 278–284.

[30] Adekola, F.A., Hodonou, D.S.S., and Adegoke, H.I., 2016, Thermodynamic and kinetic studies of biosorption of iron and manganese from aqueous medium using rice husk ash, Appl. Water Sci., 6 (4), 319–330.

[31] Masulili, A., Utomo, W.H., and Syechfani, M.S., 2010, Rice husk biochar for rice based cropping system in acid soil 1. The characteristics of rice husk biochar and its influence on the properties of acid sulfate soils and rice growth in West Kalimantan, Indonesia, J. Agric. Sci., 2 (1), 39–47.

[32] Varela Milla, O., Rivera, E.B., Huang, W.J., Chien, C.C., and Wang, Y.M., 2013, Agronomic properties and characterization of rice husk and wood biochars and their effect on the growth of water spinach in a field test, J. Soil Sci. Plant Nutr., 13, 251–266.

[33] Severo, F.F., da Silva, L.S., Moscôso, J.S.C., Sarfaraz, Q., Rodrigues Júnior, L.F., Lopes, A.F., Marzari, L.B., and Molin, G.D., 2020, Chemical and physical characterization of rice husk biochar and ashes and their iron adsorption capacity, SN Appl. Sci., 2 (7), 1286.

[34] Lindner, T., Bonebeau, S., Drehmann, R., Grund, T., Pawlowski, L., and Lampke, T., 2016, Analytical methods to characterize heterogeneous raw material for thermal spray process: Cored wire Inconel 625, IOP Conf. Ser.: Mater. Sci. Eng., 118 (1), 012009.

[35] Ministry of Agriculture of the Republic of Indonesia, 2019, Persyaratan Teknis Minimal Pupuk Organik, Pupuk Hayati dan Pembenah Tanah, Regulation of Ministry of Agriculture of the Republic of Indonesia Number: 261/KPTS/SR.310/M/4/2019, Jakarta, Indonesia.

[36] Kuncaka, A., and Taryono, T., 2023, Metode Pembuatan Pembenah Tanah Abu Sekam-Kalsium-Kalium-Proteinat-Fosfat, Simple Patent, S000006209.

[37] Mensah, E., Kyei-Baffour, N., Ofori, E., and Obeng, G.Y., 2009, “Influence of Human Activities and Land Use on Heavy Metal Concentrations in Irrigated Vegetables in Ghana and Their Health Implications” in Appropriate Technologies for Environmental Protection in the Developing World, Eds. Yanful, E.K., Springer, Dordrecht, Netherlands, 9–14.

[38] Ajah, D.N., Agboeze, E., Ihedioha, J.N., Chukwudi-Madu, E., Chime, C.C., 2022, Levels of zinc (Zn), copper (Cu), iron (Fe), and cadmium (Cd) in soil, rice stalk, and Oryza sativa grain in Ishiagu rice field, Ebonyi State, Nigeria; Human health risk, J. Niger. Soc. Phys. Sci., 4 (4), 891.

[39] Taiwo, A.M., Adenekan, A.A., Olatunde, K.A., Oladoyinbo, F.O. and Oyedepo, J.A., 2024, Assessment of potentially toxic metals in selected local and foreign rice brands from Southwestern Nigeria: Implications for human health, J. Food Compos. Anal., 133, 106428.

[40] Shahriar, S.M.S., Munshi, M., Hossain, M.S., Zakir, H.M., and Salam, S.M.A., 2023, Risk assessment of selected heavy metals contamination in rice grains in the Rajshahi City of Bangladesh, J. Eng. Sci., 14 (1), 29–41.

[41] Shen, X., Chi, Y., and Xiong, K., 2019, The effect of heavy metal contamination on humans and animals in the vicinity of a zinc smelting facility, PLoS One, 14 (10), e0207423.

[42] Juswono, U.P., Wardoyo, A.Y.P., Widodo, C.S., Noor, J.A.E., and Santoso, D.R., 2020, The impact of exposure to aerosol mosquitoes repellent related to free radicals on the organs of male mice, Int. J. GEOMATE, 18 (67), 78–83.

[43] Jordanova, D., Jordanova, N., Petrov, P., and Tsacheva, T., 2010, Soil development of three Chernozem-like profiles from North Bulgaria revealed by magnetic studies, Catena, 83 (2), 158–169.

[44] Billingham, K.L., 2012, Humic Products–Potential or Presumption for Agriculture. Do Humic Products Have a Place in Australian Grazing Enterprises?, Proceedings of the 22nd International Grassland Congress, Sydney, Australia, 15-19 September 2013.

[45] de Melo, B.A.G., Motta, F.L., and Santana, M.H.A., 2016, Humic acids: Structural Properties and Multiple Functionalities for Novel Technological Developments, Mater. Sci. Eng., C, 62, 967–974.

[46] Ampong, K., Thilakaranthna, M.S., and Gorim, L.Y., 2022, Understanding the role of humic acids on crop performance and soil health, Front. Agron., 4, 848621.

[47] Boguta, P., D’Orazio, V., Senesi, N., Sokołowska, Z., and Szewczuk-Karpisz, K., 2019, Insight into the interaction mechanism of iron ions with soil humic acids. The effect of the pH and chemical properties of humic acids, J. Environ. Manage., 245, 367–374.

[48] Rengel, 2015, Availability of Mn, Zn, and Fe in the rhizosphere, J. Soil Sci. Plant Nutr., 15 (2), 397–409.

[49] Mossa, A.W., Gashu, D., Broadley, M.R., Dunham, S.J., McGrath, S.P., Bailey, E.H., and Young, S.D., 2021, The effect of soil properties on zinc lability and solubility in soils of Ethiopia - An isotopic dilution study, SOIL, 7 (1), 255–268.

[50] Bhalerao, S.A., Sharma, A.S., and Poojari., A.C., 2015, Toxicity of nickel in plants, Int. J. Pure Appl. Biosci., 3 (2), 345–355.

[51] Thapa, S., Bhandari, A., Ghimire, R., Xue, Q., Kidwaro, F., Ghatrehsamani, S., Maharjan, B., and Goodwin, M., 2021, Managing micronutrients for improving soil fertility, health, and soybean yield, Sustainability, 13 (21), 11766.

[52] Zhang, S., Wen, J., Hu, Y., Fang, Y., Zhang, H., Xing, L., Wang, Y., and Zeng, G., 2019, Humic substances from green waste compost: An effective washing agent for heavy metal (Cd, Ni) removal from contaminated sediments, J. Hazard. Mater., 366, 210–218.



DOI: https://doi.org/10.22146/ijc.98791

Article Metrics

Abstract views : 271 | views : 137


Copyright (c) 2024 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.