Analysis of Hg(II) Metal by Voltammetric Method Using a Carbon Electrode Modified with EDTA from Used Tire Waste

https://doi.org/10.22146/ijc.97561

Sukoma Sukoma(1), Sagir Alva(2), Eka Safitri(3), Julinawati Julinawati(4), Mustanir Mustanir(5), Syafrizal Fonna(6), Muhammad Ihsan(7), Fitri Dara(8), Meri Dayanti(9), Ahmad Kamal Arifin(10), Khairi Suhud(11*)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Jl. Teuku Nyak Arief No. 441, Banda Aceh 23111, Indonesia
(2) Department of Mechanical Engineering, Faculty of Engineering, Universitas Mercu Buana, Jl. Meruya Selatan No. 1, Jakarta 11650, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Jl. Teuku Nyak Arief No. 441, Banda Aceh 23111, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Jl. Teuku Nyak Arief No. 441, Banda Aceh 23111, Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Jl. Teuku Nyak Arief No. 441, Banda Aceh 23111, Indonesia
(6) Department Mechanical Engineering and Industrial Engineering, Faculty of Engineering, Universitas Syiah Kuala, Jl. Teuku Nyak Arief No. 441, Banda Aceh 23111, Indonesia
(7) Faculty of Engineering, Universitas Gajah Putih, Jl. Lukup Badak No. 3, Takengon 24519, Aceh, Indonesia
(8) Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Samaun Samadikun Science and Technology Area, Jl. Sangkuriang, Dago, Bandung 40135, Indonesia
(9) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Jl. Teuku Nyak Arief No. 441, Banda Aceh 23111, Indonesia
(10) Center of Integrated Design for Advanced Mechanical System (PRISMA), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
(11) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Jl. Teuku Nyak Arief No. 441, Banda Aceh 23111, Indonesia
(*) Corresponding Author

Abstract


Development of a carbon electrode sensor from used tire waste via pyrolysis, modified with ethylenediaminetetraacetic acid (EDTA) for mercury detection using the cyclic voltammetry (CV) method. EDTA plays a role in metal complexation due to its strong response to mercury metal. The FTIR results of the carbon electrode and EDTA show a C–N bond at a wavenumber of 1,217.08 cm1, indicating the presence of EDTA. The SEM results reveal a clear difference between the unmodified carbon electrode and the EDTA-modified carbon electrode. The calibration graph is linear, with an R2 value of 0.9961, a sensitivity of 0.3472, as well as LoD and LoQ values of 0.03 and 0.08 ppm, respectively. The correlation coefficient is less than 2%, and the %recovery is within the allowable error range. Mercury measurements in Sungai Mas water samples, Aceh Barat, using voltammetry and AAS, exceed the threshold set by Indonesian Government Regulation (PPRI) No. 22 of 2021. The t-test results for the two Hg measurement methods at a 5% significance level (α) show that tcalculated < ttable (0.083 < 2.571). This indicates no significant difference between the voltammetry and AAS methods for measuring Hg concentrations in water.


Keywords


used tire waste; voltammetry; EDTA; mercury; cyclic voltammetry

Full Text:

Full Text PDF


References

[1] Bernadus, G.E., Polii, B., and Rorong, J.A., 2021, Dampak merkuri terhadap lingkungan perairan sekitar lokasi pertambangan di Kecamatan Loloda Kabupaten Halmahera Barat Provinsi Maluku Utara, Agri-SosioEkonomi Unsrat, 17 (2), 599–610.

[2] Sapari, S., Abdul Razak, N.H., Hasbullah, S.A., Heng, L.Y., Chong, K.F., and Tan, L.L., 2020, A regenerable screen-printed voltammetric Hg(II) ion sensor based on tris-thiourea organic chelating ligand grafted graphene nanomaterial, J. Electroanal. Chem., 878 (12), 114670.

[3] Jin Mei, C., and Alang Ahmad, S.A., 2021, A review on the determination heavy metals ions using calixarene-based electrochemical sensors, Arabian J. Chem., 14 (9), 103303.

[4] Siddiqui, S., Nafady, A., El-Sagher, H.M., Al-Saeedi, S.I., Alsalme, A.M., Sirajuddin, S., Talpur, F.N., Sherazi, S.T.H., Kalhoro, M.S., Shah, M.R., Shaikh, T., Arain, M., and Bhargava, S.K., 2019, Sub-ppt level voltammetric sensor for Hg2+ detection based on nafion stabilized l-cysteine-capped Au-Ag core-shell nanoparticles, J. Solid State Electrochem., 23 (7), 2073–2083.

[5] Bayindir, S., 2019, A simple rhodanine-based fluorescent sensor for mercury and copper: The recognition of Hg2+ in aqueous solution, and Hg2+/Cu2+ in organic solvent, J. Photochem. Photobiol., A, 372, 235–244.

[6] Cheng, Y., Hao, Z., Hao, C., Deng, Y., Li, X., Li, K., and Zhao, Y., 2019, A review of modification of carbon electrode material in capacitive deionization, RSC Adv., 9 (42), 24401–24419.

[7] Kawde, A.N., 2017, Trace determination of Hg(II) in human saliva using disposable electrochemically pretreated graphite pencil electrode surfaces, Acta Chim. Slov., 64 (2), 267–275.

[8] Mahamane, A., Despas, C., Adamou, R., and Walcarius, A., 2022, Carbon paste electrode modified with 5-Br-PADAP as a new electrochemical sensor for the detection of inorganic mercury(II), J. Mater. Environ. Sci., 13 (1), 54–69.

[9] Zhu, W., Tang, J., and Huang, L., 2019, Ultra-sensitive electrochemical determination of mercury ions based on the dithizone modified electrode, Int. J. Electrochem. Sci., 15 (1), 168–176.

[10] Bowles, A.J., Nievas, Á., and Fowler, G.D., 2023, Consecutive recovery of recovered carbon black and limonene from waste tires by thermal pyrolysis in a rotary kiln, Sustainable Chem. Pharm., 32, 100972.

[11] Ding, K., Zhou, L., Qu, R., Zhang, D., Chen, J., He, X., Wang, L., Wang, H., and Dou, H., 2020, Honeycomb-shaped carbon particles prepared from bicycle waste tires for anodes in lithium-ion batteries, Mater. Chem. Phys., 251, 123202.

[12] Baihaqi, B., Suhud, K., Alva, S., Safitri, E., Julinawati, J., Ginting, B., Fonna, S., Arifin, A.K., Zulnazri, Z., and Islami, N., 2023, Fabrication of mercury (Hg) sensor based on Tire Waste (TW) carbon electrode and voltammetry technique, SINERGI, 27 (3), 415–422.

[13] Moutcine, A, and Chtaini, A., 2018, Electrochemical determination of trace mercury in water sample using EDTA-CPE modified electrode, Sens. Bio-Sens. Res., 17, 30–35.

[14] Touzara, S., Amlil, A., Ennachete, M., Smaini, M.A., and Chtaini, A., 2020, Development of carbon paste electrode/EDTA/polymer sensor for heavy metals detection, Anal. Bioanal. Electrochem., 12 (5), 644–652.

[15] Saenchoopa, A., Klangphukhie, S., Somsub, R., Talodthaisong, C., Patramanon, R., Daduang, J., Daduang, S., and Kulchat, S., 2021, A disposable electrochemical biosensor based on screen-printed carbon electrodes modified with silver nanowires/HPMC/chitosan/urease for the detection of mercury(II) in water, Biosensors, 11 (10), 351.

[16] Al-wadei, M.J., Bakheit, A.H., Abdel-Aziz, A.A.M., and Wani, T.A., 2021, Betaxolol: A comprehensive profile, Profiles Drug Subst., Excipients, Relat. Methodol., 46, 91–136.

[17] Bharj, R.S., Bharj, J., and Vasistha, V., 2018, “Thermodynamics of Carbon Nanotubes and Soot Formation” in Air Pollution and Control, Eds. Sharma, N., Agarwal, A.K., Eastwood, P., Gupta, T., and Singh, A.P., Springer Singapore, Singapore, 143–151.

[18] Mohammed, A., and Abdullah, A., 2018, Scanning Electron Microscopy (SEM): A review, Proceedings of 2018 International Conference on Hydraulics and Pneumatics - HERVEX, Băile Govora, Romania, 7-9 November 2018, 77–85.

[19] Vasanthi Sridharan, N., and Mandal, B.K., 2022, Simultaneous quantitation of lead and cadmium on an EDTA reduced graphene oxide-modified glassy carbon electrode, ACS Omega, 7, 45469−45480.

[20] Yang, Z., 2024, Voltammetry for quantitative determination of trace mercury ions in water via acetylene black modified carbon paste electrode, Alexandria Eng. J., 87, 107–113.

[21] Kasapoğlu, N., Baykal, A., Toprak, M.S., Köseoğlu, Y., and Bayrakdar, H., 2007, Synthesis and characterization of NiFe2O4 nano-octahedrons by EDTA-assisted hydrothermal method, Turk. J. Chem., 31, 659–666.

[22] Gong, Y., Chen, X., and Wu, W., 2024, Application of Fourier transform infrared (FTIR) spectroscopy in sample preparation: Material characterization and mechanism investigation, Adv. Sample Prep., 11, 100122.

[23] Tiwow, A.V., Rampe, J.M., Rampe, H.L., and Apita, A., 2021, Pola inframerah arang tempurung kelapa hasil pemurnian menggunakan asam, Chem. Prog., 14 (2), 116–123.

[24] Harvey, D., 2000, Modern Analytical Chemistry, McGraw-Hill, New York, US.

[25] Taleuzzaman, M., 2018, Limit of blank (LOB), limit of detection (LOD), and limit of quantification (LOQ), Org. Med. Chem. Int. J., 7 (5), 127–131.



DOI: https://doi.org/10.22146/ijc.97561

Article Metrics

Abstract views : 89 | views : 57


Copyright (c) 2024 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.