Enhanced Optical Properties of ZnO-TiO2 Films Through Co-Sensitization with Multiple Natural Dyes
Musyarofah Musyarofah(1*), Inas Nuraini(2), Budi Prayitno(3), Lusi Ernawati(4), Andi Idhil Ismail(5), Triwikantoro Triwikantoro(6)
(1) Department of Physics, Institut Teknologi Kalimantan, Jl. Soekarno-Hatta Km. 15, Balikpapan 76127, Indonesia
(2) Department of Physics, Institut Teknologi Kalimantan, Jl. Soekarno-Hatta Km. 15, Balikpapan 76127, Indonesia
(3) Department of Mechanical Engineering, Universitas Balikpapan, Jl. Pupuk Raya, Balikpapan 76114, Indonesia
(4) Department of Chemical Engineering, Institut Teknologi Kalimantan, Jl. Soekarno-Hatta Km. 15, Balikpapan 76127, Indonesia
(5) Department of Mechanical Engineering, Institut Teknologi Kalimantan, Jl. Soekarno-Hatta Km. 15, Balikpapan 76127, Indonesia
(6) Department of Physics, Faculty of Data Science and Analytics, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
(*) Corresponding Author
Abstract
Keywords
Full Text:
Full Text PDFReferences
[1] Abas, N., Kalair, A., and Khan, N., 2015, Review of fossil fuels and future energy technologies, Futures, 69, 31–49.
[2] Parisi, M.L., Maranghi, S., and Basosi, R., 2014, The evolution of the dye sensitized solar cells from Grätzel prototype to up-scaled solar applications: A life cycle assessment approach, Renewable Sustainable Energy Rev., 39, 124–138.
[3] Tomar, N., Agrawal, A., Dhaka, V.S., and Surolia, P.K., 2020, Ruthenium complexes-based dye sensitized solar cells: Fundamentals and research trends, Sol. Energy, 207, 59–76.
[4] Alhorani, S., Kumar, S., Genwa, M., and Meena, P.L., 2020, Review of latest efficient sensitizer in dye-sensitized solar cells, AIP Conf. Proc., 2265 (1), 03063.
[5] Ansari, A.A., Nazeeruddin, M.K., and Tavakoli, M.M., 2021, Organic-inorganic upconversion nanoparticles hybrid in dye-sensitized solar cells, Coord. Chem. Rev., 436, 213805.
[6] Ramanarayanan, R., Nijisha, P., Niveditha, C.V., and Sindhu, S., 2017, Natural dyes from red amaranth leaves as light-harvesting pigments for dye-sensitized solar cells, Mater. Res. Bull., 90, 156–161.
[7] Angreni, W., Mursal, M., and Yusibani, E., 2018, Sintesa lapisan tipis MgTiO3 dengan metode sol gel, J. Aceh Phys. Soc., 7 (2), 68–84.
[8] Zhang, K., Qiu, L., Tao, J., Zhong, X., Lin, Z., Wang, R., and Liu, Z., 2021, Recovery of gallium from leach solutions of zinc refinery residues by stepwise solvent extraction with N235 and Cyanex 272, Hydrometallurgy, 205, 105722.
[9] Nurlaila, R., Musyarofah, M., Muwwaqor, N.F., Triwikantoro, T., Kuswoyo, A., and Pratapa, S., 2017, Phase analysis of ZrO2-SiO2 systems synthesized through ball milling mechanical activations, AIP Conf. Proc., 1788 (1), 030122.
[10] Elsandika, G., Putri, A.D.C., Musyarofah, M., and Pratapa, S., 2019, Synthesis of ZrSiO4 powders by a sol-gel method with varied calcination temperatures, IOP Conf. Ser.: Mater. Sci. Eng., 496 (1), 012047.
[11] Musyarofah, M., Astuti, D., Nuraini, I., Azizah, N., Septiana, A.R., Prayitno, B., Husain, H., Yudoyono, G., and Mohamed, Z., 2024, Extraction and optical properties of plant dyes for dye-sensitized solar cell application, AIP Conf. Proc., 2923 (1), 040010.
[12] Buthelezi, N.M.D., Gololo, S.S., and Mugivhisa, L.L., 2022, An assessment of moringa (Moringa oleifera L.) seed extract on crop water productivity and physico-biochemical properties of cancer bush (Sutherlandia frutescens L.) under deficit irrigation, Horticulturae, 8 (10), 938.
[13] Nurlinda, N., Handayani, V., and Rasyid, F.A., 2021, Spectrophotometric determination of total flavonoid content in Biancaea sappan (Caesalpinia sappan L.) leaves, JFFI, 8 (3), 1–4.
[14] Mansour, R., Dhouib, S., and Sakli, F., 2022, UV protection and dyeing properties of wool fabrics dyed with aqueous extracts of madder roots, chamomiles, pomegranate peels, and apple tree branches barks, J. Nat. Fibers, 19 (2), 610–620.
[15] Putri, H.F.W., Khusmitha, Q.N., Mahardhika, G.P.C., Hidayati, D.Y.N., Raras, T.Y.M., and Norahmawati, E., 2022, Comparison of phytochemical content and antifungal activity of Bajakah Tampala stem (Spatholobus littoralis Hassk.) methanol and ethanol extracts against Candida albicans, Asian J. Health Res., 1 (2), 19–24.
[16] Hapsari, S., Yohed, I., Kristianita, R.A., Jadid, N., Aparamarta, H.W., and Gunawan, S., 2022, Phenolic and flavonoid compounds extraction from Calophyllum inophyllum leaves, Arabian J. Chem., 15 (3), 103666.
[17] Lai, H.T., Nguyen, G.T., Tran, N.T., Nguyen, T.T., Van Tran, C., Nguyen, D.K., Chang, S.W., Chung, W.J., Nguyen, D.D., Thi, H.P.N., and La, D.D., 2022, Assembled porphyrin nanofiber on the surface of g-C3N4 nanomaterials for enhanced photocatalytic degradation of organic dyes, Catalysts, 12 (12), 1630.
[18] Yilmaz, C., and Gökmen, V., 2016, “Chlorophyll” in Encyclopedia of Food and Health, Academic Press, Oxford, UK, 37–41.
[19] Njoku, D.I., Oguzie, E.E., and Li, Y., 2017, Characterization, electrochemical and theoretical study of the anticorrosion properties of Moringa oleifera extract, J. Mol. Liq., 237, 247–256.
[20] Li, R., Chen, G., Dong, G., and Sun, X., 2014, Controllable synthesis of nanostructured TiO2 by CTAB-assisted hydrothermal route, New J. Chem., 38 (10), 4684–4689.
[21] Kalu, O., Duarte Moller, J.A., and Reyes Rojas, A., 2019, Structural and optical properties of cadmium magnesium zinc oxide (Cd-Mg-ZnO) nanoparticles synthesized by sol–gel method, Phys. Lett. A, 383 (10), 1037–1046.
[22] Yedurkar, S., Maurya, C., and Mahanwar, P., 2016, Biosynthesis of zinc oxide nanoparticles using Ixora coccinea leaf extract—A green approach, Open J. Synth. Theory Appl., 5 (1), 1–14.
[23] Vijayalakshmi, D., Chellappa, M., Anjaneyulu, U., Manivasagam, G., and Sethu, S., 2016, Influence of coating parameter and sintering atmosphere on the corrosion resistance behavior of electrophoretically deposited composite coatings, Mater. Manuf. Processes, 31 (1), 95–106.
[24] Kaur, M., and Verma, N.K., 2014, CaCO3/TiO2 nanoparticles based dye sensitized solar cell, J. Mater. Sci. Technol., 30 (4), 328–334.
[25] Zarif, M.E., Yehia-Alexe, S.A., Bita, B., Negut, I., Locovei, C., and Groza, A., 2022, Calcium phosphates–chitosan composite layers obtained by combining radio-frequency magnetron sputtering and matrix-assisted pulsed laser evaporation techniques, Polymers, 14 (23), 5241.
[26] Soares, L.S., Perim, R.B., de Alvarenga, E.S., Guimarães, L.M., Teixeira, A.V.N.C., Coimbra, J.S.R., and de Oliveira, E.B., 2019, Insights on physicochemical aspects of chitosan dispersion in aqueous solutions of acetic, glycolic, propionic or lactic acid, Int. J. Biol. Macromol., 128, 140–148.
[27] Alosfur, F.K.M., Ouda, A.A., Ridha, N.J., and Abud, S.H., 2019, Structure and optical properties of TiO2 nanorods prepared using polyol solvothermal method, AIP Conf. Proc., 2144 (1), 030025.
[28] Kongsong, P., Sikong, L., Niyomwas, S., and Rachpech, V., 2014, Photocatalytic antibacterial performance of glass fibers thin film coated with N-doped SnO2/TiO2, Sci. World J., 2014 (1), 869706.
[29] Singh, S., and Chakrabarti, P., 2013, Optical characterization of ZnO thin films grown by thermal oxidation of metallic zinc, Adv. Sci., Eng. Med., 5 (7), 677–682.
[30] Kurban, H., Dalkilic, M., Temiz, S., and Kurban, M., 2020, Tailoring the structural properties and electronic structure of anatase, brookite and rutile phase TiO2 nanoparticles: DFTB calculations, Comput. Mater. Sci., 183, 109843.
[31] Cole, J.M., Pepe, G., Al Bahri, O.K., and Cooper, C.B., 2019, Co-sensitization in dye-sensitized solar cells, Chem. Rev., 119 (12), 7279–7327.
DOI: https://doi.org/10.22146/ijc.96154
Article Metrics
Abstract views : 1201 | views : 571Copyright (c) 2024 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.