New Insights of Response Surface Methodology Approach in Optimizing Total Phenolic Content of Zanthoxylum acanthopodium DC. Fruit Extracted Using Microwave-Assisted Extraction and the Impact to Antioxidant Activity

https://doi.org/10.22146/ijc.95922

Sumaiyah Sumaiyah(1*), Retno Murwanti(2), Didi Nurhadi Illian(3), Muhammad Fauzan Lubis(4), Keshia Tampubolon(5)

(1) Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Sumatera Utara, Jl. Tri Dharma, Padang Bulan, Medan 20155, Indonesia
(2) Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(3) Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Jl. Syech Abdurrauf, Kopelma Darussalam, Banda Aceh 23111, Indonesia
(4) Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Jl. Tri Dharma, Padang Bulan, Medan 20155, Indonesia
(5) Undergraduate Program, Faculty of Pharmacy, Universitas Sumatera Utara, Jl. Tri Dharma, Padang Bulan, Medan 20155, Indonesia
(*) Corresponding Author

Abstract


Zanthoxylum acanthopodium DC., a unique spice plant from North Sumatra, is rich in beneficial secondary metabolites, particularly phenolic compounds. This study utilized the microwave-assisted extraction method to enhance the extraction of these bioactive compounds. The goal was to determine the optimal extraction conditions, including solvent concentration (X1), microwave power (X2), and extraction time (X3) to maximize the total phenolic content (TPC) of Z. acanthopodium fruit. A Box-Behnken design, part of response surface methodology, was used with three factors at three levels: X1 (50%, 75%, and 100% ethanol in water), X2 (180, 300, and 450 W), and X3 (3, 8.5, and 14 min). The phenolic compounds in the optimized extract were identified using LC-HRMS, and its antioxidant activity was measured using radical scavenging activity assays. The statistical analysis indicated a significant quadratic model (p-value < 0.05), with a high R2 of 86.25%. Optimal conditions for maximum TPC (159.637 ± 5.72 mg GAE/g) were achieved with 50% ethanol, 450 W, and 8.5 min, outperforming conventional extraction methods. Compared to the non-optimized extract, the optimized extract also exhibited strong antioxidant activity, particularly in DPPH radical inhibition. This method successfully optimized TPC in Z. acanthopodium fruit, enhancing its antioxidant properties.


Keywords


Zanthoxylum acanthopodium DC.; phenol; response surface methodology; microwave-assisted extraction; antioxidant

Full Text:

Full Text PDF


References

[1] Xu, C.C., Wang, B., Pu, Y.Q., Tao, J.S., and Zhang, T., 2017, Advances in extraction and analysis of phenolic compounds from plant materials, Chin. J. Nat. Med., 15 (10), 721–731.

[2] Nur Onal, F., Ozturk, I., Aydin Kose, F., Der, G., Kilinc, E., and Baykan, S., 2023, Comparative evaluation of polyphenol contents and biological activities of five Cistus L. species native to Turkey, Chem. Biodiversity, 20 (1), e202200915.

[3] Adrian, A., Syahputra, R.A., Juwita, N.A., Astyka, R., and Lubis, M.F., 2023, Andaliman (Zanthoxylum acanthopodium DC.) a herbal medicine from North Sumatera, Indonesia: Phytochemical and pharmacological review, Heliyon, 9 (5), e16159.

[4] Bagade, S.B., and Patil, M., 2021, Recent advances in microwave assisted extraction of bioactive compounds from complex herbal samples: A review, Crit. Rev. Anal. Chem., 51 (2), 138–149.

[5] Hasibuan, P.A.Z., Keliat, J.M., and Lubis, M.F., 2023, Microwave-assisted extraction impacts on pharmacological activity of Vernonia amygdalina Delile leaf extracts and FT-IR application for phytochemicals analysis, Rasayan J. Chem., 16 (3), 1677–1685.

[6] Wong, J.C.J., and Nillian, E., 2023, Microwave-assisted extraction of bioactive compounds from Sarawak Liberica sp. coffee pulp: Statistical optimization and comparison with conventional methods, Food Sci. Nutr., 11 (9), 5364–5378.

[7] Alara, O.R., Nour, A.H., and Abdul Mudalip, S.K., 2019, Screening of microwave-assisted-batch extraction parameters for recovering total phenolic and flavonoid contents from Chromolaena odorata leaves through two-level factorial design, Indones. J. Chem., 19 (2), 511–521.

[8] Karami, Z., Emam-Djomeh, Z., Mirzaee, H.A., Khomeiri, M., Mahoonak, A.S., and Aydani, E., 2015, Optimization of microwave assisted extraction (MAE) and soxhlet extraction of phenolic compound from licorice root, J. Food Sci. Technol., 52 (6), 3242–3253.

[9] Irakli, M., Bouloumpasi, E., Christaki, S., Skendi, A., and Chatzopoulou, P., 2023, Modeling and optimization of phenolic compounds from sage (Salvia fruticosa L.) post-distillation residues: Ultrasound- versus microwave-assisted extraction, Antioxidants, 12 (3), 549.

[10] García-Sarrió, M.J., Sanz, M.L., Palá-Paúl, J., Díaz, S., and Soria, A.C., 2023, Optimization of a green microwave-assisted extraction method to obtain multifunctional extracts of Mentha sp, Foods, 12 (10), 2039.

[11] Weremfo, A., Abassah-Oppong, S., Adulley, F., Dabie, K., and Seidu-Larry, S., 2023, Response surface methodology as a tool to optimize the extraction of bioactive compounds from plant sources, J. Sci. Food Agric., 103 (1), 26–36.

[12] Louhıchı, G., Bousselmı, L., Ghrabı, A., and Khounı, I., 2019, Process optimization via response surface methodology in the physico-chemical treatment of vegetable oil refinery wastewater, Environ. Sci. Pollut. Res., 26 (19), 18993–19011.

[13] Wang, X., Liu, X., Shi, N., Zhang, Z., Chen, Y., Yan, M., and Li, Y., 2023, Response surface methodology optimization and HPLC-ESI-QTOF-MS/MS analysis on ultrasonic-assisted extraction of phenolic compounds from okra (Abelmoschus esculentus) and their antioxidant activity, Food Chem., 405, 134966.

[14] Arya, A., Chahal, R., Nanda, A., Kaushik, D., Bin-Jumah, M., Rahman, M.H., Abdel-Daim, M.M., and Mittal, V., 2021, Statistically designed extraction of herbs using ultrasound waves: A review, Curr. Pharm. Des., 27 (34), 3638–3655.

[15] Mahmoud, B.S., and McConville, C., 2023, Box-Behnken design of experiments of polycaprolactone nanoparticles loaded with irinotecan hydrochloride, Pharmaceutics, 15 (4), 1271.

[16] Ferreira, S.L.C., Bruns, R.E., Ferreira, H.S., Matos, G.D., David, J.M., Brandão, G.C., da Silva, E.G.P., Portugal, L.A., dos Reis, P.S., Souza, A.S., and dos Santos, W.N.L., 2007, Box-Behnken design: An alternative for the optimization of analytical methods, Anal. Chim. Acta, 597 (2), 179–186.

[17] Abd-El-Aziz, N.M., Hifnawy, M.S., El-Ashmawy, A.A., Lotfy, R.A., and Younis, I.Y., 2022, Application of Box-Behnken design for optimization of phenolics extraction from Leontodon hispidulus in relation to its antioxidant, anti-inflammatory and cytotoxic activities, Sci. Rep., 12 (1), 8829.

[18] Elgudayem, F., Aldiyab, A., Albalawi, M.A., Omran, A., Kafkas, N.E., Saghrouchni, H., Var, I., Rahman, M.A., El Sabagh, A., Sakran, M., and Ben Ahmed, C., 2023, Box-Behnken design based optimization of phenolic extractions from Polygonum equisetiforme roots linked to its antioxidant and antibacterial efficiencies, Front. Sustainable Food Syst., 7, 1141207.

[19] Zeković, Z., Vladić, J., Vidović, S., Adamović, D., and Pavlić, B., 2016, Optimization of microwave-assisted extraction (MAE) of coriander phenolic antioxidants – response surface methodology approach, J. Sci. Food Agric., 96 (13), 4613–4622.

[20] Woumbo, C.Y., Kuate, D., Klang, M.J., and Womeni, H.M., 2021, Valorization of Glycine max (soybean) seed waste: optimization of the microwave-assisted extraction (MAE) and characterization of polyphenols from soybean meal using response surface methodology (RSM), J. Chem., 2021 (1), 4869909.

[21] Filip, S., Pavlić, B., Vidović, S., Vladić, J., and Zeković, Z., 2017, Optimization of microwave-assisted extraction of polyphenolic compounds from Ocimum basilicum by response surface methodology, Food Anal. Methods, 10 (7), 2270–2280.

[22] Lubis, M.F., Kaban, V.E., Gurning, K., Parhan, P., Syahputra, H., Juwita, N.A., Astyka, R., and Zulfansyah, I., 2023, Phytochemicals and biological activities of ethanolic extract of Garcinia atroviridis leaf grown in Indonesia, J. Med. Chem. Sci., 6 (10), 2456–2469.

[23] Lubis, L.D., Prananda, A.T., Juwita, N.A., Nasution, M.A., Syahputra, R.A., Sumaiyah, S., Lubis, R.R., Lubis, M.F., Astyka, R., and Atiqah, J.F., 2024. Unveiling antioxidant capacity of standardized chitosan-tripolyphosphate microcapsules containing polyphenol-rich extract of Portulaca oleraceae, Heliyon, 10 (8), e29541.

[24] Lubis, M.F., Syahputra, H., Illian, D.N., and Kaban, V.E., 2022, Antioxidant activity and nephroprotective effect of Lansium parasiticum leaves in doxorubicin-induced rats, J. Pharm. Res., 26 (3), 565–573.

[25] Lubis, M.F., Sumaiyah, S., Lubis, L.D., Fitri, K., and Astyka, R., 2024, Application of Box-Behnken design for optimization of Vernonia amygdalina stem bark extract in relation to its antioxidant and anti-colon cancer activity, Arabian J. Chem., 17 (4), 105702.

[26] Andres, A.I., Petron, M.J., Lopez, A.M., and Timon, M.L., 2020, Optimization of extraction conditions to improve phenolic content and in vitro antioxidant activity in craft brewers' spent grain using response surface methodology (RSM), Foods, 9 (10), 1398.

[27] Bimakr, M., Rahman, R.A., Taip, F.S., Mohd Adzahan, N., Sarker, M.Z., and Ganjloo, A., 2012, Optimization of ultrasound-assisted extraction of crude oil from winter melon (Benincasa hispida) seed using response surface methodology and evaluation of its antioxidant activity, total phenolic content and fatty acid composition, Molecules, 17 (10), 11748–11762.

[28] Oludemi, T., Barros, L., Prieto, M.A., Heleno, S.A., Barreiro, M.F., and Ferreira, I.C.F.R., 2018, Extraction of triterpenoids and phenolic compounds from Ganoderma lucidum: optimization study using the response surface methodology, Food Funct., 9 (1), 209–226.

[29] Li, F., Mao, Y.D., Wang, Y.F., Raza, A., Qiu, L.P., and Xu, X.Q., 2017, Optimization of ultrasonic-assisted enzymatic extraction conditions for improving total phenolic content, antioxidant and antitumor activities in vitro from Trapa quadrispinosa Roxb. residues, Molecules, 22 (3), 396.

[30] Gigliobianco, M.R., Campisi, B., Peregrina, D.V., Censi, R., Khamitova, G., Angeloni, S., Caprioli, G., Zannotti, M., Ferraro, S., Giovannetti, R., Angeloni, C., Lupidi, G., Pruccoli, L., Tarozzi, A., Voinovich, D., and Martino, P.D., 2020, Optimization of the extraction from spent coffee grounds using the desirability approach, Antioxidants, 9 (5), 370.

[31] Wu, F., Shi, S., Liu, C., Zhang, H., Li, X., and Li, Z., 2022, Optimization of the extraction of total phenols from Medicago sativa and its antioxidant capacity, Chem. Biodiversity, 19 (4), e202100898.

[32] Hasibuan, P.A.Z., Keliat, J.M., Lubis, M.F., and Nasution, A., 2024, The ethyl acetate extract of Vernonia amygdalina leaf ameliorates gemcitabine effect against migration and invasion of PANC-1 cells via down-regulation the VEGF, COX2, and RAS/MEK pathways, Saudi Pharm. J., 32 (1), 101872.

[33] Lubis, M.F., Sumaiyah, S., Nasution, E.S., Astyka, R., Masfria, M., Syahputra, H., and Lase, C.N., 2023, Cytotoxic activity of the purified extracts from duku (Lansium domesticum Corr.) leaf against MCF-7 and HTB-183 cell lines, and the correlation with antioxidant activity, Eurasian Chem. Commun., 5 (12), 1082–1095.

[34] Fitri, K., Lubis, M.F., Syahputra, H., Astyka, R., and Kaban, V.E., 2023, Phytochemicals analysis of Baccaurea motleyana Mull. Arg. extracts and antiproliferation effect against PANC-1 cell through p53 and Bcl-2 expressions, Rasayan J. Chem., 16 (3), 1516–1524.

[35] Sibero, M.T., Siswanto, A.P., Murwani, R., Frederick, E.H., Wijaya, A.P., Syafitri, E., Farabi, K., Saito, S., and Igarashi, Y., 2020, Antibacterial, cytotoxicity and metabolite profiling of crude methanolic extract from andaliman (Zanthoxylum acanthopodium) fruit, Biodiversitas, 21 (9), 4147–4154.

[36] Farida, Y., Azela, W., Lestari, M.E., and Pratami, D.K., 2021, The quality parameters, total flavonoids determination and antioxidant activity compound of andaliman fruit (Zanthoxylum acanthopodium DC.) extract, Int. J. Appl. Pharm., 13 (2), 34–40.

[37] Nooreen, Z., Singh, S., Singh, D.K., Tandon, S., Ahmad, A., and Luqman, S., 2017, Characterization and evaluation of bioactive polyphenolic constituents from Zanthoxylum armatum DC., a traditionally used plant, Biomed. Pharmacother., 89, 366–375.

[38] Brahmi, F., Lounis, N., Mebarakou, S., Guendouze, N., Yalaoui-Guellal, D., Madani, K., Boulekbache-Makhlouf, L., and Duez, P., 2022, Impact of growth sites on the phenolic contents and antioxidant activities of three Algerian Mentha species (M. pulegium L., M. rotundifolia (L.) Huds., and M. spicata L.), Front. Pharmacol., 13, 886337.

[39] Benazzouz-Smail, L., Achat, S., Brahmi, F., Bachir-Bey, M., Arab, R., Lorenzo, J.M., Benbouriche, A., Boudiab, K., Hauchard, D., Boulekbache, L., and Madani, K., 2023, Biological properties, phenolic profile, and botanical aspect of Nigella sativa L. and Nigella damascena L. seeds: A comparative study, Molecules, 28 (2), 571.

[40] Cao, Q., Yan, J., Sun, Z., Gong, L., Wu, H., Tan, S., Lei, Y., Jiang, B., and Wang, Y., 2021, Simultaneous optimization of ultrasound-assisted extraction for total flavonoid content and antioxidant activity of the tender stem of Triarrhena lutarioriparia using response surface methodology, Food Sci. Biotechnol., 30 (1), 37–45.

[41] Aquino, G., Basilicata, M.G., Crescenzi, C., Vestuto, V., Salviati, E., Cerrato, M., Ciaglia, T., Sansone, F., Pepe, G., and Campiglia, P., 2023, Optimization of microwave-assisted extraction of antioxidant compounds from spring onion leaves using Box-Behnken design, Sci. Rep., 13 (1), 14923.

[42] Ogundele, O.M., Gbashi, S., Oyeyinka, S.A., Kayitesi, E., and Adebo, O.A., 2021, Optimization of infrared heating conditions for precooked cowpea production using response surface methodology, Molecules, 26 (20), 6137.

[43] Aishah Baharuddin, S., Nadiah Abd Karim Shah, N., Saiful Yazan, L., Abd Rashed, A., Kadota, K., Al-Awaadh, A.M., and Aniza Yusof, Y., 2023, Optimization of Pluchea indica (L.) leaf extract using ultrasound-assisted extraction and its cytotoxicity on the HT-29 colorectal cancer cell line, Ultrason. Sonochem., 101, 106702.

[44] Shekhar, S., Prakash, P., Singha, P., Prasad, K., and Singh, S.K., 2023, Modeling and optimization of ultrasound-assisted extraction of bioactive compounds from Allium sativum leaves using response surface methodology and artificial neural network coupled with genetic algorithm, Foods, 12 (9), 1925.

[45] Yang, J., Zhang, Z., Wu, Q., Ding, X., Yin, C., Yang, E., Sun, D., Wang, W., Yang, Y., and Guo, F., 2022, Multiple responses optimization of antioxidative components extracted from Fenugreek seeds using response surface methodology to identify their chemical compositions, Food Sci. Nutr., 10 (10), 3475–3484.

[46] Jing, C.L., Dong, X.F., and Tong, J.M., 2015, Optimization of ultrasonic-assisted extraction of flavonoid compounds and antioxidants from alfalfa using response surface method, Molecules, 20 (9), 15550–15571.

[47] Vhangani, L.N., Favre, L.C., Rolandelli, G., Van Wyk, J., and Del Pilar Buera, M., 2022, Optimising the polyphenolic content and antioxidant activity of green rooibos (Aspalathus linearis) using beta-cyclodextrin assisted extraction, Molecules, 27 (11), 3556.

[48] Hosni, S., Gani, S.S.A., Orsat, V., Hassan, M., and Abdullah, S., 2023, Ultrasound-assisted extraction of antioxidants from Melastoma malabathricum Linn.: Modeling and optimization using Box-Behnken design, Molecules, 28 (2), 487.

[49] Park, N.Y., Cho, S.D., Chang, M.S., and Kim, G.H., 2022, Optimization of the ultrasound-assisted extraction of flavonoids and the antioxidant activity of Ruby S apple peel using the response surface method, Food Sci. Biotechnol., 31 (13), 1667–1678.

[50] Inthachat, W., Temviriyanukul, P., On-Nom, N., Kanoongon, P., Thangsiri, S., Chupeerach, C., and Suttisansanee, U., 2023, Optimization of phytochemical-rich Citrus maxima Albedo extract using response surface methodology, Molecules, 28 (10), 4121.

[51] Dai, C.Y., Liao, P.R., Zhao, M.Z., Gong, C., Dang, Y., Qu, Y., and Qiu, L.S., 2020, Optimization of ultrasonic flavonoid extraction from Saussurea involucrate, and the ability of flavonoids to block melanin deposition in human melanocytes, Molecules, 25 (2), 313.

[52] Zhao, F., Huang, S., Ge, L., Wang, Y., Liu, Y., Chen, C., Liu, X., and Han, Q., 2022, Reducing toxic constituents of ginkgolic acid content and improving bioactive flavonoid content from Ginkgo biloba leaves by high-temperature pretreatment processing, Food Sci. Nutr., 11 (2), 838–852.

[53] Sharif, I., Adewale, P., Dalli, S.S., and Rakshit, S., 2018 Microwave pretreatment and optimization of osmotic dehydration of wild blueberries using response surface methodology, Food Chem., 269, 300–310.

[54] Abu Bakar, F.I., Abu Bakar, M.F., Abdullah, N., Endrini, S., and Fatmawati, S., 2020, Optimization of extraction conditions of phytochemical compounds and anti-gout activity of Euphorbia hirta L. (ara tanah) using response surface methodology and liquid chromatography-mass spectrometry (LC-MS) analysis, Evidence-Based Complementary Altern. Med., 2020 (1), 4501261.

[55] Lovrić, V., Putnik, P., Kovačević, D.B., Jukić, M., and Dragović-Uzelac, V., 2017, The effect of microwave-assisted extraction on the phenolic compounds and antioxidant capacity of blackthorn flowers, Food Technol. Biotechnol., 55 (2), 243–250.

[56] Le, X.D., Nguyen, M.C., Vu, D.H., Pham, M.Q., Pham, Q.L., Nguyen, Q.T., Nguyen, T.A., Pham, V.T., Bach, L.G., Nguyen, T.V., and Tran, Q.T., 2019, Optimization of microwave-assisted extraction of total phenolic and total flavonoid contents from fruits of Docynia indica (Wall.) Decne. using response surface methodology, Processes, 7 (8), 485.

[57] Mikucka, W., Zielinska, M., Bulkowska, K., and Witonska, I., 2022, Recovery of polyphenols from distillery stillage by microwave-assisted, ultrasound-assisted and conventional solid-liquid extraction, Sci. Rep., 12 (1), 3232.

[58] Liyana-Pathirana, C., and Shahidi, F., 2005, Optimization of extraction of phenolic compounds from wheat using response surface methodology, Food Chem., 93 (1), 47–56.

[59] Jain, T., Jain, V., Pandey, R., Vyas, A., Gandhi, S., and Shukla, S.S., 2009, Microwave assisted extraction for phytoconstituents-An overview, Asian J. Res. Chem., 2 (1), 19–25.

[60] Mikucka, W., Zielińska, M., Bułkowska, K., and Witońska, I., 2022, Valorization of distillery stillage by polyphenol recovery using microwave-assisted, ultrasound-assisted and conventional extractions, J. Environ. Manage., 322, 116150.

[61] Carpentieri, S., Ferrari, G., and Pataro, G., 2023, Pulsed electric fields-assisted extraction of valuable compounds from red grape pomace: Process optimization using response surface methodology, Front. Nutr., 10, 1158019.

[62] Ahmad, I., Narsa, A.C., Ramadhani, M.R., Zamruddin, N.M., Iswahyudi, I., Hajrah, H., Indriyanti, N., Arifuddin, M., Siska, S., Supandi, S., and Ambarwati, N.S.S., 2023, Optimization of microwave-assisted extraction on polyphenol metabolite from Eleutherine bulbosa (Mill.) Urb. bulbs using response surface methodology, J. Adv. Pharm. Technol. Res., 14 (2), 113–118.

[63] Saifullah, M., McCullum, R., and Vuong, Q., 2021, Optimization of microwave-assisted extraction of polyphenols from lemon myrtle: comparison of modern and conventional extraction techniques based on bioactivity and total polyphenols in dry extracts, Processes, 9 (12), 2212.

[64] Bener, M., Şen, F.B., Önem, A.N., Bekdeşer, B., Çelik, S.E., Lalikoglu, M., Aşçı, Y.S., Capanoglu, E., and Apak, R., 2022, Microwave-assisted extraction of antioxidant compounds from by-products of Turkish hazelnut (Corylus avellana L.) using natural deep eutectic solvents: Modeling, optimization and phenolic characterization, Food Chem., 385, 132633.

[65] Coelho, J.P., Robalo, M.P., Boyadzhieva, S., and Stateva, R.P., 2021, Microwave-assisted extraction of phenolic compounds from spent coffee grounds. Process optimization applying design of experiments, Molecules, 26 (23), 7320.

[66] Belwal, T., Pandey, A., Bhatt, I.D., and Rawal, R.S., 2020, Optimized microwave assisted extraction (MAE) of alkaloids and polyphenols from Berberis roots using multiple-component analysis, Sci. Rep., 10 (1), 917.

[67] Dalimunthe, A., Satria, D., Sitorus, P., Harahap, U., Angela, I.F.D., and Waruwu, S.B., 2024, Cardioprotective effect of hydroalcohol extract of andaliman (Zanthoxylum acanthopodium DC.) fruits on doxorubicin-induced rats, Pharmaceuticals, 17 (3), 359.

[68] Qi, W., Qi, W., Xiong, D., and Long, M., 2022, Quercetin: Its antioxidant mechanism, antibacterial properties and potential application in prevention and control of toxipathy, Molecules, 27 (19), 6545.

[69] Jeszka-Skowron, M., Krawczyk, M., and Zgoła-Grześkowiak, A., 2015, Determination of antioxidant activity, rutin, quercetin, phenolic acids and trace elements in tea infusions: Influence of citric acid addition on extraction of metals, J. Food Compos. Anal., 40, 70–77.

[70] Zhu, Y., Yu, J., Jiao, C., Tong, J., Zhang, L., Chang, Y., Sun, W., Jin, Q., and Cai, Y., 2019, Optimization of quercetin extraction method in Dendrobium officinale by response surface methodology, Heliyon, 5 (9), e02374.

[71] Chagas, M.S.S., Behrens, M.D., Moragas-Tellis, C.J., Penedo, G.X.M., Silva, A.R., and Gonçalves-de-Albuquerque, C.F., 2022, Flavonols and flavones as potential anti-inflammatory, antioxidant, and antibacterial compounds, Oxid. Med. Cell. Longevity, 2022 (1) 9966750.

[72] Bangar, S.P., Chaudhary, V., Sharma, N., Bansal, V., Ozogul, F., and Lorenzo, J.M., 2023, Kaempferol: A flavonoid with wider biological activities and its applications, Crit. Rev. Food Sci. Nutr., 63 (28), 9580–9604.

[73] Altemimi, A.B., Mohammed, M.J., Yi-Chen, L., Watson, D.G., Lakhssassi, N., Cacciola, F., and Ibrahim, S.A., 2020, Optimization of ultrasonicated kaempferol extraction from Ocimum basilicum using a Box-Behnken design and its densitometric validation, Foods, 9 (10), 1379.



DOI: https://doi.org/10.22146/ijc.95922

Article Metrics

Abstract views : 158 | views : 73


Copyright (c) 2024 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.