Non-enzymatic Determination of Glucose in Artificial Urine Using 3D-µPADs through Silver Nanoparticles Formation

https://doi.org/10.22146/ijc.95588

Ahmad Luthfi Fahmi(1), Kamila Rohadatul 'Aisy(2), Ika Oktavia Wulandari(3), Hermin Sulistyarti(4), Akhmad Sabarudin(5*)

(1) Department of Chemistry, Faculty of Science, Universitas Brawijaya, Jl. Veteran No. 12-16, Malang 65145, Indonesia
(2) Department of Chemistry, Faculty of Science, Universitas Brawijaya, Jl. Veteran No. 12-16, Malang 65145, Indonesia
(3) Department of Chemistry, Faculty of Science, Universitas Brawijaya, Jl. Veteran No. 12-16, Malang 65145, Indonesia
(4) Department of Chemistry, Faculty of Science, Universitas Brawijaya, Jl. Veteran No. 12-16, Malang 65145, Indonesia
(5) Department of Chemistry, Faculty of Science, Universitas Brawijaya, Jl. Veteran No. 12-16, Malang 65145, Indonesia
(*) Corresponding Author

Abstract


Patients with diabetes often experience blood glucose fluctuations, making monitoring crucial. Traditional blood sampling methods pose risks of infection and pain. An alternative non-invasive approach using urine tests has been explored. Recent studies highlight microfluidic paper-based analytical devices (µPADs) as convenient, simple, and easily fabricated tools for non-invasive glucose measurement. This study aims to develop a concept of measuring glucose in artificial urine using 3D-µPADs in a non-enzymatic manner by utilizing glucose as a reducing agent for silver nanoparticle (AgNPs) formation. Embedding three-dimensional connectors in µPADs links the sample and detection zones to limit reagent mixing and improve glucose detection resolution. The optimal conditions were NaOH 10 M, starch 1%, and AgNO3 30 mM, with sample and detection zone volumes of 10 and 9 µL, respectively. The fifth reaction sequence involved AgNO3 in the detection zone and a solution of glucose, NaOH, and starch in the sample zone at 1:1:1 volume ratio. The reagent drying time was 15 min, with immobilization once and reaction time of 9 min. The method showed excellent linearity (R2 = 0.9905), precision (%RSD = 4.27%), accuracy (77.32–92.58%), and limit of detection (11.11 mg/dL).

Keywords


glucose; ImageJ; non-invasive; paper-based devices; silver nanoparticle



References

Farmaki, P., Damaskos, C., Garmpis, N., Garmpi, A., Savvanis, S., and Diamantis, E., 2021, Complications of the Type 2 Diabetes Mellitus, Curr. Cardiol. Rev., 16 (4), 249–251.

Tomic, D., Shaw, J. E., and Magliano, D. J., 2022, The burden and risks of emerging complications of diabetes mellitus, Nat. Rev. Endocrinol., 18 (9), 525–539.

Elhefnawy, M. E., Ghadzi, S. M. S., and Noor Harun, S., 2022, Predictors Associated with Type 2 Diabetes Mellitus Complications over Time: A Literature Review, J. Vasc. Dis., 1 (1), 13–23.

Qaid, M. M., and Abdelrahman, M. M., 2016, Role of insulin and other related hormones in energy metabolism—A review, Cogent Food Agric., 2 (1), 1–18.

Zhao, X., An, X., Yang, C., Sun, W., Ji, H., and Lian, F., 2023, The crucial role and mechanism of insulin resistance in metabolic disease, Front. Endocrinol. (Lausanne)., 14, 1–24.

Rahman, M. S., Hossain, K. S., Das, S., Kundu, S., Adegoke, E. O., Rahman, M. A., Hannan, M. A., Uddin, M. J., and Pang, M. G., 2021, Role of insulin in health and disease: An update, Int. J. Mol. Sci., 22 (12), 1–19.

Galicia-Garcia, U., Benito-Vicente, A., Jebari, S., Larrea-Sebal, A., Siddiqi, H., Uribe, K. B., Ostolaza, H., and Martín, C., 2020, Pathophysiology of Type 2 Diabetes Mellitus, Int. J. Mol. Sci., 21 (17), 1–34.

Mng’agi, M. O., Mwandigha, A. M., and Mbugi, E. V, 2023, Gender-inclined Young Age Glycosuria: Contribution to Late Age Chronic Renal Diseases, Type 2 Diabetes Mellitus and Cardiovascular Diseases, East African Heal. Res. J., 7 (1), 88–93.

Vargas-Delgado, A. P., Arteaga Herrera, E., Tumbaco Mite, C., Delgado Cedeno, P., Van Loon, M. C., and Badimon, J. J., 2023, Renal and Cardiovascular Metabolic Impact Caused by Ketogenesis of the SGLT2 Inhibitors, Int. J. Mol. Sci., 24 (4), 1–15.

Tuttle, K. R., 2017, Back to the future: Glomerular hyperfiltration and the diabetic kidney, Diabetes, 66 (1), 14–16.

Prapaporn, S., Arisara, S., Wunpen, C., and Wijitar, D., 2020, Nanocellulose Films to Improve the Performance of Distance-based Glucose Detection in Paper-based Microfluidic Devices, Anal. Sci., 36 (12), 1447–1451.

Sechi, D., Greer, B., Johnson, J., and Hashemi, N., 2013, Three-Dimensional Paper-Based Microfluidic Device for Assays of Protein and Glucose in Urine, Anal. Chem., 85 (22), 10733–10737.

Swensson, B., Ek, M., and Gray, D. G., 2018, In Situ Preparation of Silver Nanoparticles in Paper by Reduction with Alkaline Glucose Solutions, ACS Omega, 3 (8), 9449–9452.

Ortega‐Arroyo, L., Martin‐Martinez, E. S., Aguilar‐Mendez, M. A., Cruz‐Orea, A., Hernandez‐Pérez, I., and Glorieux, C., 2013, Green synthesis method of silver nanoparticles using starch as capping agent applied the methodology of surface response, Starch - Stärke, 65 (9–10), 814–821.

Durmazel, S., Üzer, A., Erbil, B., Sayın, B., and Apak, R., 2019, Silver Nanoparticle Formation-Based Colorimetric Determination of Reducing Sugars in Food Extracts via Tollens’ Reagent, ACS Omega, 4 (4), 7596–7604.

Meshram, S. M., Bonde, S. R., Gupta, I. R., Gade, A. K., and Rai, M. K., 2013, Green synthesis of silver nanoparticles using white sugar, IET Nanobiotechnology, 7 (1), 28–32.

Chen, Z., Wright, C., Dincel, O., Chi, T. Y., and Kameoka, J., 2020, A low-cost paper glucose sensor with molecularly imprinted polyaniline electrode, Sensors (Switzerland), 20 (4), 1–11.

Nishat, S., Jafry, A. T., Martinez, A. W., and Awan, F. R., 2021, Paper-based microfluidics: Simplified fabrication and assay methods, Sensors Actuators, B Chem., 336, 1–20.

Nguyen, H. Q., Nguyen, V. D., Phan, V. M., and Seo, T. S., 2024, A novel point-of-care platform for rapid SARS-CoV-2 detection utilizing an all-in-one 3D-printed microfluidic cartridge and IoT technology, Sensors Actuators B Chem., 410, 1–13.

Gerold, C. T., Bakker, E., and Henry, C. S., 2018, Selective Distance-Based K+ Quantification on Paper-Based Microfluidics, Anal. Chem., 90 (7), 4894–4900.

Al-Jaf, S. H., and Omer, K. M., 2022, Enhancing of detection resolution via designing of a multi-functional 3D connector between sampling and detection zones in distance-based microfluidic paper-based analytical device: multi-channel design for multiplex analysis, Microchim. Acta, 189 (482), 1–10.

Altundemir, S., Uguz, A. K., and Ulgen, K., 2017, A review on wax printed microfluidic paper-based devices for international health, Biomicrofluidics, 11 (4), 1–26.

Hiraoka, R., Kuwahara, K., Wen, Y.-C., Yen, T.-H., Hiruta, Y., Cheng, C.-M., and Citterio, D., 2020, Paper-Based Device for Naked Eye Urinary Albumin/Creatinine Ratio Evaluation, ACS Sensors, 5 (4), 1110–1118.

Kumar, S. V., Bafana, A. P., Pawar, P., Rahman, A., Dahoumane, S. A., and Jeffryes, C. S., 2018, High conversion synthesis of <10 nm starch-stabilized silver nanoparticles using microwave technology, Sci. Rep., 8 (1), 1–10.

Salaheldin, H. I., 2018, Corrigendum: Optimizing the synthesis conditions of silver nanoparticles using corn starch and their catalytic reduction of 4-nitrophenol (Advances in Natural Sciences: Nanoscience and Nanotechnology 9 (025013) DOI: 10.1088/2043-6254/aac4eb), Adv. Nat. Sci. Nanosci. Nanotechnol., 9 (3), 1–10.

Jung, J., Raghavendra, G. M., Kim, D., and Seo, J., 2018, One-step synthesis of starch-silver nanoparticle solution and its application to antibacterial paper coating, Int. J. Biol. Macromol., 107, 2285–2290.

El-Rafie, M. H., Ahmed, H. B., and Zahran, M. K., 2014, Facile Precursor for Synthesis of Silver Nanoparticles Using Alkali Treated Maize Starch, Int. Sch. Res. Not., 2014, 1–12.

Nguyen, H. T., Nguyen, T. D., Nguyen, D. P., Thai, N. T. T., and Nguyen, T. H., 2022, Synthesis efficiency of silver nanoparticles by light-emitting diode and microwave irradiation using starch as a reducing agent, Nanotechnol. Environ. Eng., 7 (1), 297–306.

Ponsanti, K., Tangnorawich, B., Ngernyuang, N., and Pechyen, C., 2020, A flower shape-green synthesis and characterization of silver nanoparticles (AgNPs) with different starch as a reducing agent, J. Mater. Res. Technol., 9 (5), 11003–11012.

Dankovich, T. A., 2014, Microwave-assisted incorporation of silver nanoparticles in paper for point-of-use water purification, Environ. Sci. Nano, 1 (4), 367–378.

Patra, J. K., and Baek, K. H., 2014, Green Nanobiotechnology: Factors Affecting Synthesis and Characterization Techniques, J. Nanomater., 2014, 1–12.

Yaqoob, A. A., Umar, K., and Ibrahim, M. N. M., 2020, Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications–a review, Appl. Nanosci., 10 (5), 1369–1378.

Zanobini, A., Sereni, B., Catelani, M., and Ciani, L., 2016, Repeatability and Reproducibility techniques for the analysis of measurement systems, Measurement, 86, 125–132.



DOI: https://doi.org/10.22146/ijc.95588

Article Metrics

Abstract views : 181 | views : 85 | views : 41


Copyright (c) 2024 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.