Phytochemistry and Biological Activities of Amomum Species

https://doi.org/10.22146/ijc.95402

Deden Indra Dinata(1), Rani Maharani(2), Fauzan Zein Muttaqin(3), Unang Supratman(4*)

(1) Faculty of Pharmacy, Bhakti Kencana University, Jl. Soekarno Hatta No. 754, Bandung 40614, Indonesia; Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia; Central Laboratory of Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(3) Faculty of Pharmacy, Bhakti Kencana University, Jl. Soekarno Hatta No. 754, Bandung 40614, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia; Central Laboratory of Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(*) Corresponding Author

Abstract


Amomum is a pungent and aromatic plant genus that contains 150–180 species, where Southeast Asia is the center of endemism, with Indonesia indigenous to 24 breeds. These species are used as spices and traditional medicine for the treatment of various diseases. This paper aims to provide Amomum species summarized data regarding phytochemistry and biological activities. Several studies have been carried out on the fruits, seeds, roots, rhizomes, and leaves of Amomum species from 1999 to 2024, as approximately 127 metabolites were isolated as flavonoid, diterpenoid, diarylheptanoid, monoterpenoid, sesquiterpenoid, phenylpropanoid, phenolic, and steroid groups. Besides cytotoxicity, anti-oxidant, and anti-inflammatory potentials; it also has an owed tendency for use as a chemical marker. The extracts and compounds obtained from the Amomum species were evaluated for biological activities, including cytotoxicity, anti-oxidant, anti-cancer, anti-proliferative, anti-inflammatory, anti-fungal, anti-microbial, neuroprotective, platelet anti-aggregation, and anti-diabetic properties. Tsaoko arilon (neolignane) had anti-proliferative and cytotoxic activity, with the highest reactions considered as lead compounds for further development. The findings highlighted the significance of using compounds from the Amomum genus in traditional medicine and the discovery of new medicines. Therefore, the results supported the concept of utilizing Amomum species as a potential source for producing biologically active compounds.

Keywords


Amomum; biological activities; phytochemistry; Zingiberaceae

Full Text:

Full Text PDF


References

[1] Zahara, M., 2020, Identification of morphological and stomatal characteristics of Zingiberaceae as medicinal plants in Banda Aceh, Indonesia, IOP Conf. Ser.: Earth Environ. Sci., 425 (1), 012046.

[2] Zhou, Y.Q., Liu, J., He, M.X., Wang, R., Zeng, Q.Q., Wang, Y., Ye, W.C., and Zhang, Q.W., 2018, “A Review of the Botany, Phytochemical, and Pharmacological Properties of Galangal” in Natural and Artificial Flavoring Agents and Food Dyes, Eds. Grumezescu, A.M., and Holban, A.M., Academic Press, Cambridge, MA, US, 351–396.

[3] Hartati, R., Suganda, A.G., and Fidrianny, I., 2014, Botanical, phytochemical and pharmacological properties of Hedychium (Zingiberaceae) – A review, Procedia Chem., 13, 150–163.

[4] de Boer, H., Newman, M., Poulsen, A.D., Droop, A.J., Fér, T., Thu Hiền, L.T., Hlavatá, K., Lamxay, V., Richardson, J.E., Steffen, K., and Leong-Škorničková, J., 2018, Convergent morphology in Alpinieae (Zingiberaceae): Recircumscribing Amomum as a monophyletic genus, Taxon, 67 (1), 6–36.

[5] Droop, A.J., and Newman, M.F., 2014, A Revision of Amomum (Zingiberaceae) in Sumatra, Edinburgh J. Bot., 71 (2), 193–258.

[6] Martin, T.S., Kikuzaki, H., Hisamoto, M., and Nakatani, N., 2000, Constituents of Amomum tsao-ko and their radical scavenging and antioxidant activities, J. Am. Oil Chem. Soc., 77 (6), 667–673.

[7] Zhang, T.T., Lu, C.L., and Jiang, J.G., 2014, Bioactivity evaluation of ingredients identified from the fruits of Amomum tsaoko Crevost et Lemaire, a Chinese spice, Food Funct., 5 (8), 1747–1754.

[8] Hong S.S., Lee, J.H., Choi, Y.H., Jeong, W., Ahn, E.K., Lym, S.H., and Oh, J.S., 2015, Amotsaokonal A-C, benzaldehyde and cycloterpenal from Amomum tsao-ko, Tetrahedron Lett., 56 (48), 6681–6684.

[9] Zhang, T.T., Lu, C.L., and Jiang, J.G., 2015, Antioxidant and anti-tumour evaluation of compounds identified from fruit of Amomum tsaoko Crevost et Lemaire, J. Funct. Foods, 18, 423–431.

[10] Chate, W., and Nuntawong, N., 2015, Diterpenes and kawalactone from the rhizomes of Amomum uliginosum J.Koenig, Biochem. Syst. Ecol., 63, 34–37.

[11] Chai, L., Liang, B.Z., Chen, M.S., Liu, B.M., and Lin, X., 2018, Two new phenylpropanoids from Amomum paratsao-ko S. Q. Tong et Y. M. Xia, Phytochem. Lett., 26, 205–207.

[12] Huong, L.T., Hung, N.V., Chung, M.V., Dai, D.N., and Ogunwande, I.A., 2018, Essential oils constituents of the leaves of Amomum gagnepainii and Amomum repoense, Nat. Prod. Res., 32 (3), 316–321.

[13] Hong, S.S., Choi, C.W., Lee, J.E., Jung, Y.W., Lee, J.A., Jeong, W., Choi, Y.H., Cha, H., Ahn, E.K., and Oh, J.S., 2021, Bioassay-guided isolation and identification of anti-obesity phytochemicals from fruits of Amomum tsao-ko, Appl. Biol. Chem., 64 (1), 2.

[14] Rahman, M.R.T., Lou, Z., Yu, F., Wang, P., and Wang, H., 2017, Antiquorum sensing and anti-biofilm activity of Amomum tao-ko (Amomum tao-ko Crevost et Lemarie) on foodborne pathogen, Saudi. J. Biol. Sci., 24 (2), 324–330.

[15] Konappa, N.M., Siddaiah, C.N., Krishnamurthy, S., Singh, B., and Ramachandrappa, N.S., 2017, Phytochemical screening and antimicrobial activity of leaf extracts of Amomum nilgiricum (Thomas) (Zingiberaceae) from Western Ghats, India, J. Biol. Act. Prod. Nat., 7 (4), 311–330.

[16] Grienke, U., Mair, C.E., Kirchmair, J., Schmidtke, M., and Rollinger, J.M., 2018, Discovery of bioactive natural products for the treatment of acute respiratory infections - An integrated approach, Planta Med., 84, 684–695.

[17] Moon S.S., Lee, J.Y., and Cho, S.C., 2004, Isotsaokoin, an antifungal agent from Amomum tsao-ko, J. Nat. Prod., 67 (5), 889–891.

[18] Guo, S.S., You, C.X., Liang, J.Y., Zhang, W.J., Yang, K., Geng, Z.F., Wang, C.F., Du, S.S., and Lei, N., 2015, Essential oil of Amomum maximum Roxb. and its bioactivities against two stored-product insects, J. Oleo Sci., 64 (12), 1307–1314.

[19] Lim, T.K., 2013, Edible Medicinal and Non-Medicinal Plants: Volume 5, Fruits, Springer Dordrecht, Netherlands.

[20] Deng, S., Hu, B., and An, H.M., 2012, Traditional Chinese medicinal syndromes and treatment in colorectal cancer, J. Cancer Ther., 03 (6A), 888–897.

[21] Setyawan, A.D., Wiryanto, W., Suranto, S., Bermawie, N., and Sudarmono, S., 2014, Comparisons of isozyme diversity in local Java cardamom (Amomum compactum) and true cardamom (Elettaria cardamomum), Nusantara Biosci., 6 (1), 94–101.

[22] Silalahi, M., 2017, Bioaktivitas Amomum compactum Soland ex Maton dan perspektif konservasinya, J. Pro-Life, 4 (2), 320–328.

[23] Ding, H.B., Yang, B., Maw, M.B., Win, P.P., and Tan, Y.H., 2020, Taxonomic studies on Amomum roxburgh s.l. (Zingiberaceae) in Myanmar II: One new species and five new records for the flora of Myanmar, PhytoKeys, 138, 139–153.

[24] Ye X.E., Leong-Škorničková, J., and Xia, N.H., 2018, Taxonomic studies on Amomum (Zingiberaceae) in China I: Introducing the subject and Amomum velutinum sp. nov. previously misidentified as A. repoeense and A. subcapitatum, Nord. J. Bot., 36 (5), njb-01661.

[25] Ye, X.E., Bai, L., Ye, Y.S., Xia, N.H., and Leong-Škorničková, J., 2018, Taxonomic studies of Amomum (Zingiberaceae) in China II: Transfer of Hornstedtia tibetica to Amomum and supplementary description of H. hainanensis, Plant Syst. Evol., 304 (9), 1165–1180.

[26] Bergman, M.E., Chávez, Á., Ferrer, A., and Phillips, M.A., 2020, Distinct metabolic pathways drive monoterpenoid biosynthesis in a natural population of Pelargonium graveolens, J. Exp. Bot., 71 (1), 258–271.

[27] Naini, A.A., Mayanti, T., and Supratman, U., 2022, Triterpenoids from Dysoxylum genus and their biological activities, Arch. Pharmacal Res., 45 (2), 63–89.

[28] Suzuki, T., Ariefta, N.R., Koseki, T., Furuno, H., Kwond, E., Momma, H., Harneti, D., Maharani, R., Supratman, U., Kimura, K., and Shiono, Y., 2019, New polyketides, paralactonic acids A–E produced by Paraconiothyrium sp. SW-B-1, an endophytic fungus associated with a seaweed, Chondrus ocellatus Holmes, Fitoterapia, 132, 75–81.

[29] Sari, A.P. and Supratman, U., 2022, Phytochemistry and biological activities of Curcuma aeruginosa (Roxb.), Indones. J. Chem., 22 (2), 576–598.

[30] Yang, M.H., Küenzi, X.P., Plitzko, I., Potterat, O., and Hamburger, M., 2009, Bicyclononane aldehydes and antiproliferative constituents from Amomum tsao-ko, Planta Med., 75 (5), 541–543.

[31] Kim, K.H., Choi, J.W., Choi, S.U., and Lee, K.R., 2010, Terpene glycosides and cytotoxic constituents from the seeds of Amomum xanthioides, Planta Med., 76 (5), 461–464.

[32] Kim, K.H., Choi, J.W., Choi, S.U., Seo, E.K., and Lee, K.R., 2010, Amoxantin A: A new bisnorlabdane diterpenoid from Amomum xanthioides, Bull. Korean Chem. Soc., 31 (4), 1035–1037.

[33] Yang, Y., Yue, Y., Runwei, Y., and Guolin, Z., 2010, Cytotoxic, apoptotic and antioxidant activity of the essential oil of Amomum tsao-ko, Bioresour. Technol., 101 (11), 4205–4211.

[34] Luo, J.G., Yin, H., and Kong, L.Y., 2014, Monoterpenes from the fruits of Amomum kravanh, J. Asian Nat. Prod. Res., 16 (5), 471–475.

[35] Choi, J.W., Kim, K.H., Lee, I.K., Choi, S.U., and Lee, K.R., 2009, Phytochemical constituents of Amomum xanthioides, Nat. Prod. Sci., 15 (1), 44–49.

[36] Thinh, B.B., Doudkin, R.V., and Thanh, V.Q., 2021, Chemical Composition of Essential Oil of Amomum xanthioides Wall. ex Baker from Northern Vietnam, Biointerface Res. Appl. Chem., 11 (4), 12275–12284.

[37] Yin, H., Jiang, N., Guo, C., and Gao, J.M., 2021, A new bergamotane sesquiterpenoid from the rhizomes of Amomum villosum var. xanthioides, Nat. Prod. Res., 35 (3), 377–383.

[38] Liang, S., Luo, J.G., Wang, Z., Wang, X.B., and Kong, L.Y., 2017, New tetranorlabdane diterpenoids from the fruits of Elettaria cardamomum Maton, Phytochem. Lett., 20, 295–299.

[39] Yin, H., Luo, J.G., and Kong, L.Y., 2013, Tetracyclic diterpenoids with isomerized isospongian skeleton and labdane diterpenoids from the fruits of Amomum kravanh, J. Nat. Prod., 76 (2), 237–242.

[40] Yin, H., Luo, J.G., Shan, S.M., Wang, X.B., Luo, J., Yang, M.H., and Kong, L.Y., 2013, Amomaxins A and B, two unprecedented rearranged labdane norditerpenoids with a nine-membered ring from Amomum maximum, Org. Lett., 15 (7), 1572–1575.

[41] Luo, J.G., Yin, H., Fan, B.Y., and Kong, L.Y., 2014, Labdane diterpenoids from the roots of Amomum maximum and their cytotoxic evaluation, Helv. Chim. Acta, 97 (8), 1140–1145.

[42] Kim, J.G., Le, T.P.L., Hong, H.R., Han, J.S., Ko, J.H., Lee, S.H., Lee, M.K., and Hwang, B.Y., 2019, Nitric oxide inhibitory constituents from the fruits of Amomum tsao-ko, Nat. Prod. Sci., 25 (1), 76–80.

[43] Zhao, H., Li, M., Zhao, Y., Lin, X., Liang H., Wei, J., Wei, W., Ma, D., Zhou, Z., and Yang, J., 2021, A comparison of two monoterpenoid synthases reveals molecular mechanisms associated with the difference of bioactive monoterpenoids between Amomum villosum and Amomum longiligulare, Front. Plant Sci., 12, 695551.

[44] Ji, K.L., Fan, Y.Y., Ge, Z.P., Sheng, L., Xu, Y.K., Gan, L.S., Li, J.Y., and Yue, J.M., 2019, Maximumins A-D, Rearranged Labdane-type diterpenoids with four different carbon skeletons from Amomum maximum, J. Org. Chem., 84 (1), 282–288.

[45] Dong, H., Gou, Y.L., Cao, S.G., Chen, S.X., Sim, K.Y., Goh, S.H., and Kini, R.M., 1999, Eicosenones and methylated flavonols from Amomum koenigii, Phytochemistry, 50 (5), 899–902.

[46] Kim, J.G., Jang, H., Le, T.P.L., Hong, H.R., Lee, M.K., Hong, J.T., Lee, D., and Hwang, B.Y., 2019, Pyranoflavanones and Pyranochalcones from the Fruits of Amomum tsao-ko, J. Nat. Prod., 82 (7), 1886–1892.

[47] Dinata, D.I., Maharani, R., Muttaqien, F.Z., Supratman, U., Azmi, M.N., and Shiono, Y., 2021, Flavonoids from the roots of Amomum compactum Soland Ex Maton (Zingiberaceae), J. Kim. Valensi, 7 (2), 142–149.

[48] Giang, P.M., Son, P.T., Matsunami, K., and Otsuka, H., 2006, New diarylheptanoids from Amomum muricarpum Elmer, Chem. Pharm. Bull., 54 (1), 139–140.

[49] Giang, P.M., Son, P.T., Matsunami, K., and Otsuka, H., 2012, One new and several minor diarylheptanoids from Amomum muricarpum, Nat. Prod. Res., 26 (13), 1195–1200.

[50] Yin, H., Luo, J.G., and Kong, L.Y., 2013, Diarylheptanoids from the fruits of Amomum kravanh and their inhibitory activities of nitric oxide production, Phytochem. Lett., 6 (3), 403–406.

[51] Yudhani, R.D., Pesik, R.N., Azzahro, S., Anisa, A.F., and Hendriyani, R., 2020, Acute toxicity test of Amomum cardamomum (kapulaga) seed extract on hepatic trasaminase enzyme in winstar rats, Indones. J. Clin. Pharm., 9 (4), 288.

[52] Aneja, K.R., and Joshi, R., 2009, Antimicrobial activity of Amomum subulatum and Elettaria cardamomum against dental caries causing microorganisms, Ethnobot. Leafl., 2009 (7), 3.

[53] Shin, J.S., Ryu, S, Jang, D.S., Cho, Y.W., Chung, E.K., and Lee, K.T., 2015, Amomum tsao-ko fruit extract suppresses lipopolysaccharide-induced inducible nitric oxide synthase by inducing heme oxygenase-1 in macrophages and in septic mice, Int. J. Exp. Pathol., 96 (6), 395–405.

[54] Yang, Y., Yan, R.W., Cai, X.Q., Zheng, Z.L., and Zou, G.L., 2008, Chemical composition and antimicrobial activity of the essential oil of Amomum tsao-ko, J. Sci. Food Agric., 88 (12), 2111–2116.

[55] Hartady, T., Balia, R.L., Rizky, M., Adipurna, A., Jasni, S., and Pontjo, B., 2020, Bioactivity of Amomum compactum Soland ex Maton (Java cardamom) as a natural antibacterial, Syst. Rev. Pharm., 11 (9), 384–387.

[56] Moon, S.S., Cho, S.C., and Lee, J.Y., 2005, Tsaokoarylone, a cytotoxic diarylheptanoid from Amomum tsao-ko fruits, Bull. Korean Chem. Soc., 26 (3), 447–450.

[57] Li, B., Choi, H.J., Lee, D.S., Oh, H., Kim, Y.C., Moon, J.Y., Park, W.H., Park, S.D., and Kim, J.E., 2014, Amomum tsao-ko suppresses lipopolysaccharide-induced inflammatory responses in RAW264.7 macrophages via Nrf2-dependent heme oxygenase-1 expression, Am. J. Chin. Med., 42 (5), 1229–1244.

[58] Lee, S., Lee, J.C., Subedi, L., Cho, K.H., Kim, S.Y., Park, H.J., and Kim, K.H., 2019, Bioactive compounds from Amomum tsaoko Crevost et Lemarie, a Chinese Spice as inhibitors of sphingosine kinase, SPHK1/2, RCS Adv., 9, 33957.

[59] Ahmed, A.S., Ahmed, Q., Saxena, A.K., and Jamal, P., 2017, Evaluation of in vitro antidiabetic and antioxidant characterizations of Elettaria cardamomum (L.) Maton (Zingiberaceae), Piper cubeba L. f. (Piperaceae), and Plumeria rubra L. (Apocynaceae), Pak. J. Pharm. Sci., 30 (1), 113–126.

[60] Subba, B., Seling, T.R., Kandel, R.C., and Phuyal, G.P., 2017, Assessment of antimicrobial and antioxidant activities of Amomum subulatum Roxb. of Nepal, Asian J. Pharm. Clin. Res., 10 (4), 95–97.

[61] Sarian, M.N., Ahmed, Q.U., Mat So’ad, S.Z., Alhassan, A.M., Murugesu, S., Perumal, V., Syed Mohamad, S.N.A., Khatib, A., and Latip, J., 2017, Antioxidant and antidiabetic effects of flavonoids: A structure-activity relationship based study, Biomed Res. Int., 2017 (1), 8386065.

[62] Pertiwi, A.D., and Halid, M., 2023, Effectiveness of wresah (Amomum dealbatum) extract in inhibiting the growth of Staphylococcus aureus, Jurnal Kesehatan Manarang, 9 (1), 26–33.

[63] Rebelo, M.J., Rego, R., Ferreira, M., and Oliveira, M.C., 2013, Comparative study of the antioxidant capacity and polyphenol content of Douro wines by chemical and electrochemical methods, Food Chem., 141 (1), 566–573.

[64] Katayama, K., Masuyama, K., Yoshioka, S., Hasegawa, H., Mitsuhashi, J., and Sugimoto, Y., 2007, Flavonoids inhibit breast cancer resistance protein-mediated drug resistance: Transporter specificity and structure-activity relationship, Cancer Chemother. Pharmacol., 60 (6), 789–797.

[65] Biswas, S., Das, R., and Banerjee, E.R., 2017, Role of free radicals in human inflammatory diseases, AIMS Biophys., 4 (4), 596–614.

[66] Srinivasan, K., 2017, Antimutagenic and cancer preventive potential of culinary spices and their bioactive compounds, PharmaNutrition, 5 (3), 89–102.

[67] Bhagat, N., and Chaturvedi, A., 2016, Spices as an alternative therapy for cancer treatment, Syst. Rev. Pharm., 7 (1), 46–56.

[68] Juwitaningsih, T., Jahro, I.S., and Sari, S.A., 2020, Evaluation of North Sumatera cardamom seed (Amomum compactum) extract as antibacterial and anticancer, J. Phys.: Conf. Ser., 1485 (1), 012019.

[69] Wang, T., Li, Q., and Bi, K., 2018 Bioactive flavonoids in medicinal plants: Structure, activity and biological fate, Asian J. Pharm. Sci., 13 (1), 12–23.

[70] Alam, A., and Singh, V., 2021, Composition and pharmacological activity of essential oils from two imported Amomum subulatum fruit samples, J. Taibah Univ. Med. Sci., 16 (2), 231–239.

[71] Cui, Q., Wang, L.T., Liu, J.Z., Wang, H.M., Guo, N., Gu, C.B, and Fu, Y.J., 2017, Rapid extraction of Amomum tsao-ko essential oil and determination of its chemical composition, antioxidant and antimicrobial activities, J. Chromatogr. B, 1061-1062, 364–371.

[72] Liu, H., Yan, Q., Zou, D., Bu, X., Zhang, B., Ma, X., Leng, A., Zhang, H., Li, D., and Wang, C., 2018, Identification and bioactivity evaluation of ingredients from the fruits of Amomum tsaoko Crevost et Lemaire, Phytochem. Lett., 28, 111–115.

[73] Guo, N., Zang, Y.P., Cui, Q., Gai, Q.Y., Jiao, J., Wang, W., Zu, Y.G., and Fu, Y.J., 2017, The preservative potential of Amomum tsaoko essential oil against E.coil, its antibacterial property and mode of action, Food Control, 75, 236–245.

[74] Mustafa, Y.F., 2023, Modern Developments in the Application and Function of Metal/Metal Oxide Nanocomposite–Based Antibacterial Agents, BioNanoScience, 13 (2), 840–852.

[75] Sharma, V., Lohia, N., Handa, V., and Baranwal, M., 2017, Amomum subulatum seed extract exhibit antioxidant, cytotoxic and immune-suppressive effect, Indian J. Biochem. Biophys., 54, 135–139.

[76] Zhang, J.S., Cao, X.X., Yu, J.H., Yu, Z.P. and Zhang, H., 2020, Diarylheptanoids with NO production inhibitory activity from Amomum kravanh, Bioorg. Med. Chem. Lett., 30 (8), 127026.

[77] Khalil, R.R., Mohammed, E.T., and. Mustafa, Y.F., 2022, Evaluation of in vitro antioxidant and antidiabetic properties of Cydonia oblonga seeds’ extracts, J. Med. Chem. Sci., 5 (6), 1048–1058.

[78] Kasim, S.M., Abdulaziz, N.T., and Mustafa, Y.F., 2022, Synthesis and biomedical activities of coumarins derived from natural phenolic acids, J. Med. Chem. Sci., 5 (4), 546–560.



DOI: https://doi.org/10.22146/ijc.95402

Article Metrics

Abstract views : 367 | views : 337


Copyright (c) 2024 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.