High Temperature Oxidation Behavior of ODS Ferritic Stainless Steel Fe-16Cr-4Al-1Ni-0.4Y2O3
Hakimul Wafda(1*), Djoko Hadi Prajitno(2), Eddy Agus Basuki(3), Ahmad Syafiq(4), Nina Widiawati(5), Asril Pramutadi Andi Mustari(6)
(1) Center for Nuclear Reactor Technology, National Research and Innovation Agency (BRIN), KST BJ Habibie, Serpong, Tangerang Selatan 15310, Indonesia; Nuclear Science and Engineering Study Program, Institut Teknologi Bandung, Jl. Ganesa No. 10, Bandung 40132, Indonesia
(2) Center for Radiation Process Technology, National Research and Innovation Agency (BRIN), KST BJ Habibie, Serpong, Tangerang Selatan 15310, Indonesia
(3) Metallurgical Engineering Study Program, Institut Teknologi Bandung, Jl. Ganesa No. 10, Bandung 40132, Indonesia
(4) Metallurgical Engineering Study Program, Institut Teknologi Bandung, Jl. Ganesa No. 10, Bandung 40132, Indonesia
(5) Center for Nuclear Reactor Technology, National Research and Innovation Agency (BRIN), KST BJ Habibie, Serpong, Tangerang Selatan 15310, Indonesia
(6) Nuclear Science and Engineering Study Program, Institut Teknologi Bandung, Jl. Ganesa No. 10, Bandung 40132, Indonesia
(*) Corresponding Author
Abstract
This study investigates the isothermic oxidation behavior of the new ODS alloy Fe-16Cr-4Al-1Ni-0.4Y2O3 (% by weight) at 700, 800 and 900 °C, with exposure times of 5, 20, 50, and 100 h at each temperature. The purpose is to obtain new data on its high-temperature parabolic oxidation constant for assessing oxidation resistance. The methods used include isothermal oxidation testing, XRD, SEM-EDS characterization, and analysis of oxidation kinetics by monitoring changes in oxide thickness using microscopy and SEM-EDS. The oxide products formed on the sample surface are Fe2O3, Fe3O4, AlFe2O4, and (Fe,Cr)2O3. Al and Cr oxides are located under the dominant Fe oxide layer on the surface of the sample. The oxidation test results showed that the most protective sample was obtained at a temperature of 700 °C for 100 h with an oxide thickness of 263.99 μm. The kinetics analysis correlates strongly with the parabolic equation (R2 ≈ 1). The oxidation rate constants at temperatures of 700, 800, and 900 °C were 681.76, 2957.5, and 12300 μm2 h−1, respectively. The activation energy required by the oxidation reaction in this alloy is 136.5 kJ mol−1. This research enhances understanding and potential applications of the Fe-16Cr-4Al-1Ni-0.4Y2O3 alloy in high-temperature environments.
Keywords
Full Text:
Full Text PDFReferences
[1] Şahin, S., and Şahin, H.M., 2021, Generation-IV reactors and nuclear hydrogen production, Int. J. Hydrogen Energy, 46 (57), 28936–28948.
[2] Kelly, J.E., 2014, Generation IV International Forum: A decade of progress through international cooperation, Prog. Nucl. Energy, 77, 240–246.
[3] Stoica, L.N., Radu, V., Nitu, A.I., Prisecaru, I., 2021, Study of the Structural Mechanical Behaviour in Liquid Lead Environment for the ALFRED Generation IV Reactor, 10th International Conference on Energy and Environment (CIEM), Bucharest, Romania, 14-15 October 2021.
[4] Basuki, E.A., Adrianto, N., Triastomo, R., Korda, A.A., Achmad, T.L., Muhammad, F., and Prajitno, D.H., 2022, Isothermal oxidation behavior of ferritic oxide dispersion strengthened alloy at high temperatures, J. Eng. Technol. Sci., 54 (2), 220210.
[5] Safarzadeh, O., and Qarani-tamai, M., 2021, Full-core reactor physics analysis for accident tolerant cladding in a VVER-1000 reactor, Ann. Nucl. Energy, 155, 108163.
[6] Khoshahval, F., 2024, Neutron-physical characteristics of UO2 and UN/U3Si2 fuels with Zr, SiC and APMT accident tolerant claddings, Radiat. Phys. Chem., 222, 111869.
[7] Menghani, J., Vyas, A., More, S., Paul, C., and Patnaik, A., 2021, Parametric investigation and optimization for CO2 laser cladding of AlFeCoCrNiCu powder on AISI 316, High Temp. Mater. Processes, 40 (1), 265–80.
[8] Verma, L., and Dabhade, V.V., 2023, Synthesis of Fe-15Cr-2W oxide dispersion strengthened (ODS) steel powders by mechanical alloying, Powder Technol., 425, 118554.
[9] Wang, X., Zhang, D., Darsell, J.T., Ross, K.A., Ma, X., Liu, J., Liu, T., Prabhakaran, R., Li, L., Anderson, I.E., and Setyawan, W., 2024, Manufacturing Oxide Dispersion Strengthened (ODS) steel plate via cold spray and friction stir processing, J. Nucl. Mater., 596, 155076.
[10] Ren, J., Yu, L. Liu, C., Ma, Z., Li, H., Wang, Z., Liu, Y., and Wang, H., 2022, Creep properties, microstructural evolution, and fracture mechanism of an Al added high Cr ODS steel during creep deformation at 600 °C, J. Nucl. Mater., 558, 153376.
[11] Singh, R., Prakash, U., Kumar, D., and Laha, K., 2023, Development of creep resistant high yttria 18Cr ferritic ODS steel through hot powder forging route, J. Nucl. Mater., 584, 154566.
[12] Pawawoi, P., Prajitno, D.H., Dewi, A.A., and Manaf, A., 2019, High-temperature oxidation behavior of Fe-18Al alloy added with 2 %ZrO2 nanoparticles, IOP Conf. Ser.: Mater. Sci. Eng., 515, 012027.
[13] Ke, L., Meng, L., Fang, S., Lin, C., Tan, M., and Qi, T., 2023, High-temperature oxidation behaviors of AlCrTiSi0.2 high-entropy alloy doped with rare earth La and Y, Crystals, 13 (8), 1169.
[14] Zheng, Z., Wang, S., Long, J., Wang, J., and Zheng, K., 2020, Effect of rare earth elements on high temperature oxidation behaviour of austenitic steel, Corros. Sci., 164, 108359.
[15] Bai, B., Han, X., Cao, H., He, X., Zhang, C., and Yang, W., 2022, Composition optimization of radiation resistance ODS alloy with high strength and ductility for advanced reactor based on machine learning, J. Nucl. Sci. Technol., 59 (6), 725–734.
[16] Xu, S., Zhou, Z., Zheng, W., and Jia, H., 2019, Mechanical properties evaluation and plastic instabilities of Fe-9%Cr ODS steels, Fusion Eng. Des., 149, 111335.
[17] Zinkle, S.J., Boutard, J.L., Hoelzer, D.T., Kimura, A., Lindau, R., Odette, G.R., Rieth, M., Tan, L., and Tanigawa, H., 2017, Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications, Nucl. Fusion, 57 (9), 092005.
[18] Ren, J., Yu, L., Liu, Y., Liu, C., Li, H., and Wu, J., 2018, Effects of Zr addition on strengthening mechanisms of Al-alloyed high-Cr ODS steels, Materials, 11 (11), 118.
[19] Schappel, D., and Capps, N., 2024, Impact of LWR assembly structural features on cladding burst behavior under LOCA conditions, Nucl. Eng. Des., 418, 112887.
[20] Gausse, C., Dunlop, C.W., Friskney, A.A., Stennett, M.C., Hyatt, N.C., and Corkhill, C.L., 2020, Synthesis, characterisation and preliminary corrosion behaviour assessment of simulant Fukushima nuclear accident fuel debris, MRS Adv., 5 (1), 65–72.
[21] Gao, J., Song, P., Huang, Y.J., Yabuuchi, K., Kimura, A., Sakamoto, K., and Yamashita, S., 2019, Effects of neutron irradiation on 12Cr–6Al-ODS steel with electron-beam weld line, J. Nucl. Mater., 524, 1–8.
[22] Seils, S., Kauffmann, A., Delis, W., Boll, T., and Heilmaier, M., 2021, Microstructure and mechanical properties of high-Mn-ODS steels, Mater. Sci. Eng., A, 825, 141859.
[23] Zhao, M., Zhang, P., Xu, J., Ye, W., Yin, S., Zhao, J., Qiao, Y., and Yan, Y., 2024, Optimization of microstructure and tensile properties for a 13Cr-1W ODS steel prepared by mechanical alloying and spark plasma sintering using pre-alloyed powder, Mater. Charact., 207, 113581.
[24] Yang, T.X., Li, Z.X., Zhou, C.J., Xu, Y.C., and Dou, P., 2023, Effects of Zr and/or Ti addition on the morphology, crystal and metal/oxide interface structures of nanoparticles in FeCrAl-ODS steels, J. Nucl. Mater., 585, 154613.
[25] Kaushik, G.N., Nagini, M., Reddy, M.S.P., Hebalkar, N.Y., Vijay, R., and Murty, B.S., 2022, Effect of Zr and ZrO2 on aqueous corrosion behaviour of oxide dispersion strengthened 9Cr ferritic-martensitic steels, Mater. Lett., 324, 132428.
[26] Mansur, L.K., Rowcliffe, A.F., Nanstad, R.K., Zinkle, S.J., Corwin, W.R., and Stoller, R.E., 2004, Materials needs for fusion, Generation IV fission reactors and spallation neutron sources – similarities and differences, J. Nucl. Mater., 329-333, 166–172.
[27] Ijiri, Y., Oono, N., Ukai, S., Ohtsuka, S., Kaito, T., and Matsukawa, Y., 2016, Oxide particle–dislocation interaction in 9Cr-ODS steel, Nucl. Mater. Energy, 9, 378–382.
[28] Basuki, E.A., Rahmaputra, F., Rabbani, N.A., Ardiansyah, S., Khan, A.M., Korda, A., Muhammad, F., and Prajitno, D.H., 2018, Effects of milling time on the microstructures of sintered Fe-16Cr-4Al-0.4Y2O3 ODS ferritic steel, Nanotechnol. Perceptions, 14 (2), 99–108.
[29] Rabbani, N.A., 2017, Studi Evolusi Mikrostruktur Baja Feritik ODS Hasil Perlakuan Milling dan Sintering dengan Metode Pembuatan Cold Compaction dan Solid-State Sintering, Undergraduate Thesis, Bandung Institute of Technology, Bandung, Indonesia.
[30] Basuki, E.A., 2016, Panduan Logam untuk Aplikasi Temperatur Tinggi dan Penghematan Energi, ITB Press, Indonesia.
[31] Tomaszewicz, P., and Wallwork, G.R., 1983, Observations of nodule growth during the oxidation of pure binary iron-aluminum alloys, Oxid. Met., 19 (5), 165–185.
[32] Cornell, R.M., and Schewertmann, U., 2000, The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses, Wiley-VCH, Weinheim, Germany.
[33] Grewal, H.S., Sanjiv, R.M., Arora, H.S., Kumar, R., Ayyagari, A., Mukherjee, S., and Singh, H., 2017, Activation energy and high temperature oxidation behavior of multi-principal element alloy, Adv. Eng. Mater., 19 (11), 1700182.
DOI: https://doi.org/10.22146/ijc.95284
Article Metrics
Abstract views : 166 | views : 68Copyright (c) 2024 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.