Synthesis, Characterization, and Antibacterial Activity of Plant-Derived Zinc Oxide Nanostructure Using Lavandula angustifolia and Phyllanthus niruri Extracts

https://doi.org/10.22146/ijc.93293

Dhiya Fakhirah(1), Tya Aisha Magfira(2), Aulia Sukma Hutama(3), Abdi Wira Septama(4), Faiza Maryani(5), Fransiska Sri Herwahyu Krismastuti(6*)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(4) Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), KST BJ Habibie, Setu, Tangerang Selatan 15314, Indonesia
(5) Research Center for Chemistry, National Research and Innovation Agency (BRIN), KST BJ Habibie, Setu, Tangerang Selatan 15314, Indonesia
(6) Research Center for Chemistry, National Research and Innovation Agency (BRIN), KST BJ Habibie, Setu, Tangerang Selatan 15314, Indonesia
(*) Corresponding Author

Abstract


In recent years, green synthesized nanomaterials have garnered wide interest due to its inherent features like rapidity, cost-effectiveness, and environmentally friendly technique. The green synthesis of Zinc oxide nanostructures (n-ZnO) using two kinds of plant extract, lavender (Lavandula angustifolia) and meniran (Phyllanthus niruri), were discussed and their antibacterial activities were compared. Characterization by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR), and field emission-scanning electron microscopy/energy dispersive X-ray spectroscopy (FE-SEM/EDS) were used to confirm the successful formation of n-ZnO using both plant extracts. The antibacterial activity of the n-ZnO synthesized from two different plant extracts was tested against Klebsiella pneumoniae and methicillin-resistant Staphylococcus aureus (MRSA). The results show that both n-ZnO has antibacterial activity against MRSA. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values for n-ZnO synthesized from meniran extract were 78 and 156 mg/mL, respectively, while MIC and MBC values for n-ZnO synthesized from lavender extract were 156 and 312 mg/mL, respectively. These results confirm that the n-ZnO prepared from meniran extract is more effective in inhibiting MRSA than the n-ZnO prepared from lavender extract. This study proves that plant-based n-ZnO has anti-microbial activities and may serve as antimicrobial therapeutics.

Keywords


lavender; meniran; n-ZnO; MRSA, Klebsiella pneumoniae

Full Text:

Full Text PDF


References

[1] Ajitha, B., Ashok Kumar Reddy, Y., and Sreedhara Reddy, P., 2015, Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract, Mater. Sci. Eng., C, 49, 373–381.

[2] Santosaningsih, D., Erikawati, D., Hakim, I.A., Santoso, S., Hidayat, M., Suwenda, A.H., Puspitasari, V., Irhamni, I., Kuntaman, K., van Arkel, A.L.E., Terlouw, L.G., Oudenes, N., Willemse-Erix, D., Snijders, S.V., Erler, N.S., Verbrugh, H.A., and Severin, J.A., 2019, Reducing transmission of methicillin-resistant Staphylococcus aureus in a surgical ward of a resource-limited hospital in Indonesia: An intervention study, Infect. Prev. Pract., 1 (3-4), 100028.

[3] UNICEF, 2019, One child dies of pneumonia every 39 seconds, agencies warn, https://www.unicef.org/indonesia/press-releases/one-child-dies-pneumonia-every-39-seconds-agencies-warn, accessed on April 11, 2023.

[4] Saravanadevi, K., Kavitha, M., Karpagavinayagam, P., Saminathan, K., and Vedhi, C., 2022, Biosynthesis of ZnO and Ag doped ZnO nanoparticles from Vitis vinifera leaf for antibacterial, photocatalytic application, Mater. Today: Proc., 48, 352–356.

[5] Preethi, S., Abarna, K., Nithyasri, M., Kishore, P., Deepika, K., Ranjithkumar, R., Bhuvaneshwari, V., and Bharathi, D., 2020, Synthesis and characterization of chitosan/zinc oxide nanocomposite for antibacterial activity onto cotton fabrics and dye degradation applications, Int. J. Biol. Macromol., 164, 2779–2787.

[6] Agarwal, H., Venkat Kumar, S., and Rajeshkumar, S., 2017, A review on green synthesis of zinc oxide nanoparticles – An eco-friendly approach, Resour.-Effic. Technol., 3 (4), 406–413.

[7] Salnus, S., Wahab, W., Arfah, R., Zenta, F., Natsir, H., Muriyati, M., Fatimah, F., Rajab, A., Armah, Z., and Irfandi, R., 2022, A review on green synthesis, antimicrobial applications and toxicity of silver nanoparticles mediated by plant extract, Indones. J. Chem., 22 (4), 1129–1143.

[8] Fakhari, S., Jamzad, M., and Kabiri Fard, H., 2019, Green synthesis of zinc oxide nanoparticles: A comparison, Green Chem. Lett. Rev., 12 (1), 19–24.

[9] Bandeira, M., Giovanela, M., Roesch-Ely, M., Devine, D.M., and da Silva Crespo, J., 2020, Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation, Sustainable Chem. Pharm., 15, 100223.

[10] Pillai, A.M., Sivasankarapillai, V.S., Rahdar, A., Joseph, J., Sadeghfar, F., Anuf, R., Rajesh, K., and Kyzas, G.Z., 2020, Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity, J. Mol. Struct., 1211, 128107.

[11] Izadiyan, Z., Shameli, K., Miyake, M., Hara, H., Mohamad, S.E., Kalantari, K., Mohd Taib, S.H., and Rasouli, E., 2020, Cytotoxicity assay of plant-mediated synthesized iron oxide nanoparticles using Juglans regia green husk extract, Arabian J. Chem., 13 (1), 2011–2023.

[12] Rather, G.A., Nanda, A., Raj, E., Mathivanan, N., and Nayak, B.K., 2022, Green synthesis of ZnO nanoparticles using the leaf extract of Lavandula angustifolia and evaluation of their antibacterial activity against human pathogens, Int. J. Health Sci., 6 (S2), 13478–13485.

[13] Ramesh, P., and Saravanan, K., 2018, Green synthesis, characterization, antimicrobial and food packaging application of biocompatible zinc oxide nanoparticles, Asian J. Res. Pharm. Sci. Biotechnol., 6 (4), 76–86.

[14] Anbuvannan, M., Ramesh, M., Viruthagiri, G., Shanmugam, N., and Kannadasan, N., 2015, Synthesis, characterization and photocatalytic activity of ZnO nanoparticles prepared by biological method, Spectrochim. Acta, Part A, 143, 304–308.

[15] Naiel, B., Fawzy, M., Halmy, M.W.A., and Mahmoud, A.E.D., 2022, Green synthesis of zinc oxide nanoparticles using Sea Lavender (Limonium pruinosum L. Chaz.) extract: Characterization, evaluation of anti-skin cancer, antimicrobial and antioxidant potentials, Sci. Rep., 12 (1), 20370.

[16] Noorjahan, C.M., 2019, Green synthesis, characterization and antibacterial activity of zinc oxide nanoparticles, Asian J. Pharm. Clin. Res., 12 (4), 106–110.

[17] Meda, A., Lamien, C.E., Romito, M., Millogo, J., and Nacoulma, O.G., 2005, Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity, Food Chem., 91 (3), 571–577.

[18] Tohidi, B., Rahimmalek, M., and Arzani, A., 2017, Essential oil composition, total phenolic and flavonoid contents, and antioxidant activity of Thymus species from different regions of Iran, Food Chem., 220, 153–161.

[19] Saeed, N., Khan, M.R., and Shabbir, M., 2012, Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L, BMS Complement. Altern. Med., 12 (1), 221.

[20] Aryal, S., Baniya, M.K., Danekhu, K., Kunwar, P., Gurung, R., and Khoirala, N., 2019, Total phenolic content and antioxidant potential of wild vegetables from Western Nepal, Plants, 8 (4), 96.

[21] Nurbayasari, R., and Saridewi, N., 2017, Biosintesis dan karakterisasi nanopartikel ZnO dengan ekstrak rumput laut hijau Caulerpa sp., Jurnal Perikanan Universitas Gadjah Mada, 19 (1), 17–28.

[22] Tournebize, J., Boudier, A., Joubert, O., Eidi, H., Bartosz, G., Maincent, P., Leroy, P., and Sapin-Minet, A., 2012, Impact of gold nanoparticle coating on redox homeostasis, Int. J. Pharm., 438 (1-2), 107–116.

[23] Agatonovic-Kustrin, S., Kustrin, E., Gegechkori, V., and Morton, D.W., 2020, Anxiolytic terpenoids and aromatherapy for anxiety and depression, Adv. Exp. Med. Biol., 1260, 283–296.

[24] Shafique, S., Jabeen, N., Ahmad, K.S., Irum, S., Anwaar, S., Ahmad, N., Alam, S., Ilyas, M., Khan, T.F., and Hussain, S.Z., 2020, Green fabricated zinc oxide nanoformulated media enhanced callus induction and regeneration dynamics of Panicum virgatum L., PLoS One, 15 (7), e0230464.

[25] Chabattula, S.C., Gupta, P.K., Tripathi, S.K., Gahtori, R., Padhi, P., Mahapatra, S., Biswal, B.K., Singh, S.K., Dua, K., Ruokolainen, J., Mishra, Y.K., Jha, N.K., Bishi, D.K., and Kesari, K.K., 2021, Anticancer therapeutic efficacy of biogenic Am-ZnO nanoparticles on 2D and 3D tumor models, Mater. Today Chem., 22, 100618.

[26] Dulta, K., Koşarsoy Ağçeli, G., Chauhan, P., Jasrotia, R., and Chauhan, P.K., 2021, A novel approach of synthesis zinc oxide nanoparticles by Bergenia ciliata rhizome extract: Antibacterial and anticancer potential, J. Inorg. Organomet. Polym. Mater., 31 (1), 180–190.

[27] Faisal, S., Jan, H., Shah, S.A., Shah, S., Khan, A., Akbar, M.T., Rizwan, M., Jan, F., Wajidullah, W., Akhtar, N., Khattak, A., and Syed, S., 2021, Green synthesis of zinc oxide (ZnO) nanoparticles using aqueous fruit extracts of Myristica fragrans: Their characterizations and biological and environmental applications, ACS Omega, 6 (14), 9709–9722.

[28] Chikkanna, M.M., Neelagund, S.E., and Rajashekarappa, K.K., 2018, Green synthesis of zinc oxide nanoparticles (ZnO NPs) and their biological activity, SN Appl. Sci., 1 (1), 117.

[29] Sirelkhatim, A., Mahmud, S., Seeni, A., Mohamad Kaus, N.H., Ann, L.C., Mohd Bakhori, S.K., Hasan, H., and Mohamad, D., 2015, Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism, Nano-Micro Lett., 7 (3), 219–242.

[30] Mendes, C.R., Dilarri, G., Forsan, C.F., Sapata, V.M.R., Lopes, P.R.M., de Moraes, P.B., Montagnolli, R.N., Ferreira, H., and Bidoia, E.D., 2022, Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens, Sci. Rep., 12 (1), 2658.



DOI: https://doi.org/10.22146/ijc.93293

Article Metrics

Abstract views : 319 | views : 107


Copyright (c) 2024 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.