Accelerated Biodegradation of Waste Polyethylene Terephthalate (PET) Fiber by Recombinant Hydrophobin HGFI Fused with Ideonella sakaiensis PETase
Nathania Puspitasari(1*), Chia Tzu Liu(2), Cheng Kang Lee(3)
(1) Department of Chemical Engineering, Faculty of Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Chemical Engineering Master Program, Faculty of Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia
(2) Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 10607, Taiwan
(3) Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 10607, Taiwan
(*) Corresponding Author
Abstract
Nowadays, an efficient and environmentally friendly polyethylene terephthalate (PET) recycling method has gained greater attention, enabling a circular economy for polyesters. Since PET is a hydrophobic polymer, the enzyme's binding affinity to PET becomes a significant issue. Herein, the first strategy is introduced to enhance PET fiber hydrolysis by genetically fusing hydrolyzing enzymes such as cutinase and PETase to protein hydrophobin HGFI. HGFI, a surface-active protein from Grifola frondosa, was used to improve the rate of enzyme hydrolysis. Furthermore, cellulose binding domains (CBD) were employed as a solubility enhancer tag of PETase fusion due to the insoluble characteristics of HGFI and PETase. The fusion proteins (CBD-HGFI-PETase and HGFI-Cut_2) were constructed with a flexible linker, expressed in Escherichia coli, and then purified by chromatography. PETase fusion exhibited 2.5-fold higher concentrations of monomer products released than that of cutinase fusion after 5 days of hydrolysis. According to the results, the fusion of HGFI to PETase showed excellent performance for enhancing the binding affinity of the enzyme on PET fiber substrate due to the increasing number of self-assembled hydrophobin interactions that modified the PET surface to be more hydrophilic. Therefore, this study indicates that the construction of CBD-HGFI-PETase enzyme fusion could be used as a novel method for efficiently accelerating PET biodegradation.
Keywords
References
[1] Maurya, A., Bhattacharya, A., and Khare, S.K., 2020, Enzymatic remediation of polyethylene terephthalate (PET)–based polymers for effective management of plastic wastes: An overview, Front. Bioeng. Biotechnol., 8, 602325.
[2] Ribitsch, D., Herrero Acero, E., Przylucka, A., Zitzenbacher, S., Marold, A., Gamerith, C., Tscheließnig, R., Jungbauer, A., Rennhofer, H., Lichtenegger, H., Amenitsch, H., Bonazza, K., Kubicek, C.P., Druzhinina, I.S., and Guebitz, G.M., 2015, Enhanced cutinase-catalyzed hydrolysis of polyethylene terephthalate by covalent fusion to hydrophobins, Appl. Environ. Microbiol., 81 (11), 3586–8592.
[3] Khairul Anuar, N.F.S., Huyop, F., Ur-Rehman, G., Abdullah, F., Normi, Y.M., Sabullah, M.K., and Abdul Wahab, R., 2022, An overview into polyethylene terephthalate (PET) hydrolases and efforts in tailoring enzymes for improved plastic degradation, Int. J. Mol. Sci., 23 (20), 12644.
[4] Puspitasari, N., Tsai, S.L., and Lee, C.K., 2021, Fungal hydrophobin RolA enhanced PETase hydrolysis of polyethylene terephthalate, Appl. Biochem. Biotechnol., 193 (5), 1284–1295.
[5] Gercke, D., Furtmann, C., Tozakidis, I.E.P., and Jose, J., 2021, Highly crystalline post-consumer PET waste hydrolysis by surface displayed PETase using a bacterial whole-cell biocatalyst, ChemCatChem, 13 (15), 3479–3489.
[6] Samak, N.A., Jia, Y., Sharshar, M.M., Mu, T., Yang, M., Peh, S., and Xing, J., 2020, Recent advances in biocatalysts engineering for polyethylene terephthalate plastic waste green recycling, Environ. Int., 145, 106144.
[7] Sharshar, M.M., Samak, N.A., Hao, X., Mu, T., Zhong, W., Yang, M., Peh, S., Ambreen, S., and Xing, J., 2019, Enhanced growth-driven stepwise inducible expression system development in haloalkaliphilic desulfurizing Thioalkalivibrio versutus, Bioresour. Technol., 288, 121486.
[8] Li, C., Zhang, R., Wang, J., Wilson, L.M., and Yan, Y., 2020, Protein engineering for improving and diversifying natural product biosynthesis, Trends Biotechnol., 38 (7), 729–744.
[9] Aalbers, F.S., and Fraaije, M.W., 2019, Enzyme fusions in biocatalysis: Coupling reactions by pairing enzymes, ChemBioChem, 20 (1), 20–28.
[10] Rennison, A.P., Prestel, A., Westh, P., and Møller, M.S., 2024, Comparative biochemistry of PET hydrolase-carbohydrate-binding module fusion enzymes on a variety of PET substrates, Enzyme Microb. Technol., 180, 110479.
[11] Wang, T., Yang, W., Gong Y., Zhang Y., Fan X., Wang G., Lu, Z., Liu, F., Liu, X., and Zhu, Y., 2024, Molecular engineering of PETase for efficient PET biodegradation, Ecotoxicol. Environ. Saf., 280, 116540.
[12] Kawai, F., Kawabata, T., and Oda, M., 2020, Current state and perspectives related to the polyethylene terephthalate hydrolases available for biorecycling, ACS Sustainable Chem. Eng., 8 (24), 8894–908.
[13] Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., Toyohara, K., Miyamoto, K., and Kimura, Y., 2016, A bacterium that degrades and assimilates poly(ethylene terephthalate), Science, 351 (6278), 1196–1199.
[14] Dai, L., Qu, Y., Huang, J.W., Hu, Y., Hu, H., Li, S., Chen, C.C., and Guo, R.T., 2021, Enhancing PET hydrolytic enzyme activity by fusion of the cellulose–binding domain of cellobiohydrolase I from Trichoderma reesei, J. Biotechnol., 334, 47–50.
[15] Ribitsch, D., Yebra, A.O., Zitzenbacher, S., Wu, J., Nowitsch, S., Steinkellner, G., Greimel, K., Doliska, A., Oberdorfer, G., Gruber, C.C., Gruber, K., Schwab, H., Stana-Kleinschek, K., Acero, E.H., and Guebitz, G.M., 2013, Fusion of binding domains to Thermobifida cellulosilytica cutinase to tune sorption characteristics and enhancing PET hydrolysis, Biomacromolecules, 14 (6), 1769–1776.
[16] Berger, B.W., and Sallada, N.D., 2019, Hydrophobins: Multifunctional biosurfactants for interface engineering, J. Biol. Eng., 13 (1), 10.
[17] Yang, J., Ge, L., Song, B., Ma, Z., Yang, X., Wang, B., Dai, Y., and Xu, H., 2022, A novel hydrophobin encoded by hgfII from Grifola frondosa exhibiting excellent self-assembly ability, Front. Microbiol., 13, 990231.
[18] Tanaka, T., Terauchi, Y., Yoshimi, A., and Abe, K., 2022, Aspergillus hydrophobins: Physicochemical properties, biochemical properties, and functions in solid polymer degradation, Microorganisms, 10 (8), 1498.
[19] Puspitasari, N., Tsai, S.L., and Lee, C.K., 2021, Class I hydrophobins pretreatment stimulates PETase for monomers recycling of waste PETs, Int. J. Biol. Macromol., 176, 157–164.
[20] Puspitasari, N., Arief, D., Ismadji, S., Saraswaty, V., Santoso, S.P., Retnoningtyas, E.S., Putro, J.N., and Gunarto, C., 2023, Synthesis of novel bacterial cellulose based silver-metal organic frameworks (BC@Ag-MOF) as antibacterial wound healing, Fine Chem. Eng., 4 (2), 193–202.
[21] Puspitasari, N., and Lee, C.K., 2021, Class I hydrophobin fusion with cellulose binding domain for its soluble expression and facile purification, Int. J. Biol. Macromol., 193 (Pt. 1), 38–43.
[22] Saraswaty, V., Aji, E.S., Ardiansyah, A., Hanifah, A., Puspitasari, N., Santoso, S.P., Hartono, S.B., Risdian, C., Chaldun, E.R., and Setiyanto, H., 2024, One pot synthesis green zinc oxide nanoparticles immobilized on activated carbon derived from pineapple peel for adsorption of Pb(II), Karbala Int. J. Mod. Sci., 10 (2), 153–65.
[23] Chen, K.J., Wu, Y.T., and Lee, C.K., 2019, Cellulose binding domain fusion enhanced soluble expression of fructosyl peptide oxidase and its simultaneous purification and immobilization, Int. J. Biol. Macromol., 133, 980–986.
[24] Hegde, K., and Veeranki, V.D., 2013, Production optimization and characterization of recombinant cutinases from Thermobifida fusca sp. NRRL B-8184, Appl. Biochem. Biotechnol., 170 (3), 654–675.
[25] Song, D., Wang, X., Yang, J., Ge, L., Wang, B., Xu, H., Gong, M., Li, Y., and Qiao, M., 2021, Hydrophobin HGFI improving the nanoparticle formation, stability and solubility of curcumin, Colloids Surf., A, 610, 125922.
[26] Abokitse, K., Grosse, S., Leisch, H., Corbeil, C.R., Perrin-Sarazin, F., and Lau, P.C.K., 2022, A novel actinobacterial cutinase containing a noncatalytic polymer-binding domain, Appl Environ Microbiol, 88 (1), e01522-21.
[27] Lo, V., Lai, J.I., Kwan, A., and Sunde, M., 2016, Hydrophobins: self‐assembly protein monolayers designed to reverse the hydrophobicity of a surface, European Microscopy Congress 2016: Proceedings, Wiley-VCH, Weinheim, Germany, 332–333.
[28] Paananen, A., Weich, S., Szilvay, G.R., Leitner, M., Tappura, K., and Ebner, A., 2021, Quantifying biomolecular hydrophobicity: Single molecule force spectroscopy of class II hydrophobins, J. Biol. Chem., 296, 100728.
[29] Austin, H.P., Allen, M.D., Donohoe, B.S., Rorrer, N.A., Kearns, F.L., Silveira, R.L., Pollard, B.C., Dominick, G., Duman, R., El Omari, K., Mykhaylyk, V., Wagner, A., Michener, W.E., Amore, A., Skaf, M.S., Crowley, M.F., Thorne, A.W., Johnson, C.W., Woodcock, H.L., McGeehan, J.E., and Beckham, G.T., 2018, Characterization and engineering of a plastic-degrading aromatic polyesterase, Proc. Natl. Acad. Sci. U. S. A., 115 (19), E4350–E4357.
[30] Joo, S., Cho, I.J., Seo, H., Son, H.F., Sagong, H.Y., Shin, T.J., Choi, S.Y., Lee, S.Y., and Kim, K.J., 2018, Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation, Nat. Commun., 9 (1), 382.
Article Metrics
Copyright (c) 2025 Indonesian Journal of Chemistry

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.











