The Potential Perspective of Processing Rice Husk as SiO2 Source to Tetraalkoxysilane in Indonesia

https://doi.org/10.22146/ijc.92862

Benny Wahyudianto(1), Wahyu Saptrio Putro(2), Thuy Thi Hong Nguyen(3), Norihisa Fukaya(4), Sho Kataoka(5*)

(1) Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
(2) Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
(3) Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
(4) Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
(5) Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
(*) Corresponding Author

Abstract


Tetra-alkoxysilane (TROS) is one of the useful chemicals and it can be processed to produce semiconductor and photovoltaic devices. Now, the transformation of silica (SiO2) to TROS is garnering interest due to the potential of extracting it from biomass. As the 14th largest country, Indonesia possesses an abundant source of SiO2 from mining activities and agricultural waste, notably rice husk (RH). However, only a little concrete action is planned for leveraging RH into a more valuable industrial substance. This review will explain two routes for TROS—conventional and direct—comparing their respective benefits and drawbacks. Additionally, it presents a simulation of various scenarios for scaling TROS production to an industrial level, considering technoeconomic and environmental assessment aspects. The focus then shifts to Indonesia’s strategic trajectory for 2045, offering recommendations to enhance resource utilization for economic and national development.


Keywords


Indonesia; rice husk ash; tetra-alkoxysilane

Full Text:

Full Text PDF


References

[1] Raturi, G., Sharma, Y., Rana, V., Thakral, V., Myaka, B., Salvi, P., Singh, M., Dhar, H., and Deshmukh, R., 2021, Exploration of silicate solubilizing bacteria for sustainable agriculture and silicon biogeochemical cycle, Plant Physiol. Biochem., 166, 827–838.

[2] Li, Z., Song, Z, Yang, X., Song, A., Yu, C., Wang, T., Xia, S., and Liang, Y., 2018, Impacts of silicon on biogeochemical cycles of carbon and nutrients in croplands, J. Integr. Agric., 17 (10), 2182–2195.

[3] Lo Piccolo, E., Ceccanti, C., Guidi, L., and Landi, M., 2021, Role of beneficial elements in plants: Implications for the photosynthetic process, Photosynthetica, 59 (2), 349–360.

[4] Rahimzadeh, C.Y., Barzinjy, A.A., Mohammed, A.S., and Hamad, S.M., 2022, Green synthesis of SiO2 nanoparticles from Rhus coriaria L. extract: Comparison with chemically synthesized SiO2 nanoparticles, PLoS One, 17 (8), e0268184.

[5] Norhasnan, N.H.A., Hassan, M.Z., Nor, A.F.M., Zaki, S.A., Dolah, R., Jamaludin, K.R., and Aziz, S.A., 2021, Physicomechanical properties of rice husk/coco peat reinforced acrylonitrile butadiene styrene blend composites, Polymers, 13 (7), 1171.

[6] Rodriguez-Otero, A., Vargas, V., Galarneau, A., Castillo, J., Christensen, J.H., and Bouyssiere, B., 2023, Sustainable harnessing of SiO2 nanoparticles from rice husks: A review of the best synthesis and applications, Processes, 11 (12), 3373.

[7] Traoré, S., Traoré, D.L., Kourouma, S.Y., and Magassouba, S., 2018, Preparation of silicon from rice husk as renewable energy resource by the use of microwave ashing and acid digestion, Int. J. Energy Eng., 8 (2), 25–29.

[8] Food and Agriculture Organization of the United Nations, 2023, Global Cereal Production Set to Reach a Record High in 2023, While Trade Could Contract in 2023/2024, https://uga.ua/en/news/global-cereal-production-set-to-reach-a-record-high-in-2023-while-trade-could-contract-in-2023-24/, accessed on October 23, 2023.

[9] Bin Rahman, A.N.M.R., and Zhang, J., 2023, Trends in rice research: 2030 and beyond, Food Energy Secur., 12 (2), e390.

[10] Singh Karam, D., Nagabovanali, P., Sundara Rajoo, K., Fauziah Ishak, C., Abdu, A., Rosli, Z., Melissa Muharam, F., and Zulperi, D., 2022, An overview on the preparation of rice husk biochar, factors affecting its properties, and its agriculture application, J. Saudi Soc. Agric. Sci., 21 (3), 149–159.

[11] Putranto, A.W., Abida, S.H., Sholeh, A.B., and Azfa, H.T., 2021, The potential of rice husk ash for silica synthesis as a semiconductor material for monocrystalline solar cell: A review, IOP Conf. Ser.: Earth Environ. Sci., 733 (1), 012029.

[12] Ciriminna, R., Laine, R.M., and Pagliaro, M., 2023, Biobased silicon and biobased silica: Two production routes whose time has come, ChemSusChem, 16 (19), e202300762.

[13] Wang, J., Li, K., Zhang, J., and Feng, J., 2023, Transparent and superhydrophobic FHA/SiO2 coatings with obvious anti-soiling performance for photovoltaic modules, Prog. Org. Coat., 183, 107679.

[14] He, T., Qian, Z., Wang, Q., Zhang, Y., Wang, H., Zhang, J., and Xu, Y., 2023, One step coating anti-reflective SiO2 film for silicon solar cells applications by atmospheric pressure plasma jet, Mater. Lett., 350, 134915.

[15] Yang, L., Yang, J., and Yang, D.Q., 2024, A durable superhydrophilic self-cleaning coating based on TiO2–SiO2-PAA nanocomposite for photovoltaic applications: Long-term outdoor study, Sol. Energy Mater. Sol. Cells, 268, 112731.

[16] Zhang, Y., Wu, B., Mu, G., Ma, C., Mu, D., and Wu, F., 2022, Recent progress and perspectives on silicon anode: Synthesis and prelithiation for LIBs energy storage, J. Energy Chem., 64, 615–650.

[17] Putro, W.S., Lee, V.Y., Sato, K., Choi, J.C., and Fukaya, N., 2021, From SiO2 to alkoxysilanes for the synthesis of useful chemicals, ACS Omega, 6 (51), 35186–35195.

[18] Chen, Y., and Zhuang, C., 2019, The effect of nano-SiO2 on concrete properties: A review, Nanotechnol. Rev., 8 (1), 562–572.

[19] Khannyra, S., Mosquera, M.J., Addou, M., and Gil, M.L.A., 2021, Cu-TiO2/SiO2 photocatalysts for concrete-based building materials: Self-cleaning and air de-pollution performance, Constr. Build. Mater., 313, 125419.

[20] Ahmed, H.U., Mohammed, A.A., and Mohammed, A.S., 2023, Effectiveness of silicon dioxide nanoparticles (Nano SiO2) on the internal structures, electrical conductivity, and elevated temperature behaviors of geopolymer concrete composites, J. Inorg. Organomet. Polym. Mater., 33 (12), 3894–3914.

[21] Nguyen, T.T.H., Fukaya, T., Sato, K., Choi, J.C., and Kataoka, S., 2022, Design and assessment of an energy self-supply process producing tetraethyl orthosilicate using rice husk, Bioresour. Technol., 344, 126188.

[22] Dosaj, V., and Tveit, H., 2016, “Silicon and Silicon Alloys, Production and Uses” in Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, New Jersey, US, 1–21.

[23] Anonymous, 2015, Fuels, https://www3.epa.gov/otaq/gvg/learn-more-fuels.htm, accessed on October 24, 2023.

[24] Gokhale, H., 2021, Japan's carbon tax policy: Limitations and policy suggestions, Curr. Res. Environ. Sustainability, 3, 100082.

[25] Ding, D., 2022, The impacts of carbon pricing on the electricity market in Japan, Humanit. Soc. Sci. Commun., 9 (1), 353.

[26] Klenert, D., Mattauch, L., Combet, E., Edenhofer, O., Hepburn, C., Rafaty, R., and Stern, N., 2018, Making carbon pricing work for citizens, Nat. Clim. Change, 8 (8), 669–677.

[27] Liu, X., Gao, B., Nakano, S., and Kakimoto, K., 2015, Numerical investigation of carbon and silicon carbide contamination during the melting process of the Czochralski silicon crystal growth, Cryst. Res. Technol., 50 (6), 458–463.

[28] Legemza, J., Findorák, R., Buľko, B., and Briančin, J., 2021, New approach in research of quartzes and quartzites for ferroalloys and silicon production, Metals, 11 (4), 670.

[29] Krylova, I.V., Egorov, M.P., and Nefedov, O.M., 2017, Reaction of silicon with alcohols in autoclave, Russ. Chem. Bull., 66 (2), 260–266.

[30] Kim, D.J., Hong, C.S., and Yoo, B.R., 2022, Development of continuous process for the preparation of tetraethyl orthosilicate through the reaction of metallurgical silicon with ethanol in the presence of base salt catalyst, J. Ind. Eng. Chem., 106, 262–268.

[31] Newton, W.E., and Rochow, E.G., 1970, The direct synthesis of organic derivatives of silicon using nonhalogenated organic compounds, Inorg. Chem., 9 (5), 1071–1075.

[32] Ekuase, O.A., Anjum, N., Eze, V.O., and Okoli, O.I., 2022, A review on the out-of-autoclave process for composite manufacturing, J. Compos. Sci., 6 (6), 172.

[33] Fukaya, N., Choi, S.J., Horikoshi, T., Kataoka, S., Endo, A., Kumai, H., Hasegawa, M., Sato, K., and Choi, J.C., 2017, Direct synthesis of tetraalkoxysilanes from silica and alcohols, New J. Chem., 41 (6), 2224–2226.

[34] Putro, W.S., Fukaya, K., Choi, J.C., Choi, S.J., Horikoshi, T., Sato, K., and Fukaya, N., 2020, Direct transformation of silica from natural resources to form tetramethoxysilane, Bull. Chem. Soc. Jpn., 93 (8), 958–962.

[35] Fukaya, N., Choi, S.J., Horikoshi, T., Kumai, H., Hasegawa, M., Yasuda, H., Sato, K., and Choi, J.C., 2016, Synthesis of tetramethoxysilane from silica and methanol using carbon dioxide and an organic dehydrating reagent, Chem. Lett., 45 (7), 828–830.

[36] Laine, R.M., Furgal, J.C., Doan, P., Pan, D., Popova, V., and Zhang, X., 2016, Avoiding carbothermal reduction: Distillation of alkoxysilanes from biogenic, green, and sustainable sources, Angew. Chem., Int. Ed., 55 (3), 1065–1069.

[37] Ichii, S., Hamasaka, G., and Uozumi, Y., 2019, The Hiyama cross-coupling reaction at parts per million levels of Pd: In situ formation of highly active spirosilicates in glycol solvents, Chem. - Asian J., 14 (21), 3850–3854.

[38] Cheng, H., Tamaki, R., Laine, R.M., Babonneau, F., Chujo, Y., and Treadwell, D.R., 2000, Neutral alkoxysilanes from silica, J. Am. Chem. Soc., 122 (41), 10063–10072.

[39] Laine, R.M., 2005, Nanobuilding blocks based on the [OSiO1.5]x (x = 6, 8, 10) octasilsesquioxanes, J. Mater. Chem., 15 (35-36), 3725–3744.

[40] Kang, K.H., and Laine, R.M., 2006, Silica dissolution as a route to octaanionic silsesquioxanes, Appl. Organomet. Chem., 20 (6), 393–398.

[41] Do, T.H., and Brown, S.N., 2019, Mono- and bimetallic pentacoordinate silicon complexes of a chelating bis(catecholimine) ligand, Dalton Trans., 48 (30), 11565–11574.

[42] Wang, M., Fei, D., Chen, C., Liu, Y., Pan, S., and Cui, Z., 2023, Global planar tetra‐, penta‐ and hexa‐coordinate silicon clusters constructed by decorating SiO3 with alkali metals, ChemPhysChem, 24 (15), e202300257.

[43] Deis, T., Maury, J., Medici, F., Jean, M., Forte, J., Vanthuyne, N., Fensterbank, L., and Lemière, G., 2022, Synthesis and optical resolution of configurationally stable zwitterionic pentacoordinate silicon derivatives, Angew. Chem., Int. Ed., 61 (3), e202113836.

[44] Hoppe, M.L., Laine, R.M., Kampf, J., Gordon, M.S., and Burggraf, L.W., 1993, Ba[Si(OCH2CH2O)3], a hexaalkoxysilicate synthesized from SiO2, Angew. Chem., Int. Ed. Engl., 32 (2), 287–289.

[45] Green, D.W., and Southard, M.Z., 2019, Perry’s Chemical Engineers’ Handbook, 9th Ed., McGraw-Hill Education, New York, US.

[46] Nguyen, T.T.H., Fukaya, N., Sato, K., Choi, J.C., and Kataoka, S., 2018, Technoeconomic and environmental assessment for design and optimization of tetraethyl orthosilicate synthesis process, Ind. Eng. Chem. Res., 57 (6), 2192–2199.

[47] Mallon, C.B., 1984, A Process for the Preparation of Alkyl Silicates, EP0142854A2, European Patent Office, Munich, Germany.

[48] Hondo, H., 2005, Life cycle GHG emission analysis of power generation systems: Japanese case, Energy, 30 (11-12), 2042–2056.

[49] Nguyen, T.T.H., Fukaya, N., Choi, S.J., Sato, K., Choi, J.C., and Kataoka, S., 2019, Impact of the water removal method on tetraethyl orthosilicate direct synthesis: Experiment and process assessment, Ind. Eng. Chem. Res., 58 (43), 19997–20002.

[50] Sugiyama, M., Fujimori, S., Wada, K., Endo, S., Fujii, Y., Komiyama, R., Kato, E., Kurosawa, A., Matsuo, Y., Oshiro, K., Sano, F., and Shiraki, H., 2019, Japan’s long-term climate mitigation policy: Multi-model assessment and sectoral challenges, Energy, 167, 1120–1131.



DOI: https://doi.org/10.22146/ijc.92862

Article Metrics

Abstract views : 179 | views : 113


Copyright (c) 2024 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.