Antibacterial Activity and Molecular Docking of Compounds from Avicennia marina Leaves Extracts: Obtained by Natural Deep Eutectic Solvents
Hartati Kartikaningsih(1*), Heder Djamaludin(2), Nanda Audina(3), Jihan Nur Fauziyah(4)
(1) Fish Product Technology Study Program, Faculty of Fisheries and Marine Science, Brawijaya University, Veteran Street No. 1, Malang 65145, Indonesia
(2) Fish Product Technology Study Program, Faculty of Fisheries and Marine Science, Brawijaya University, Veteran Street No. 1, Malang 65145, Indonesia
(3) Fish Product Technology Study Program, Faculty of Fisheries and Marine Science, Brawijaya University, Veteran Street No. 1, Malang 65145, Indonesia
(4) Fish Product Technology Study Program, Faculty of Fisheries and Marine Science, Brawijaya University, Veteran Street No. 1, Malang 65145, Indonesia
(*) Corresponding Author
Abstract
Keywords
Full Text:
Full Text PDFReferences
[1] Mitra, S., Naskar, N., Lahiri, S., and Chaudhuri, P., 2023, A study on phytochemical profiling of Avicennia marina mangrove leaves collected from Indian Sundarbans, Sustainable Chem. Environ., 4, 100041.
[2] Nabeelah Bibi, S., Fawzi, M.M., Gokhan, Z., Rajesh, J., Nadeem, N., Kannan, R.R.R., Albuquerque, R.D.D.G., and Pandian, S.K., 2019, Ethnopharmacology, phytochemistry, and global distribution of mangroves—A comprehensive review, Mar. Drugs, 17 (4), 231.
[3] Al Maqtari, M.A., and Nagi, H.M., 2014, Screening of salt-stress, antioxidant enzyme, and antimicrobial activity of leave extracts of mangroves Avicennia marina L. from Hodaidah, Yemen, J. Stress Physiol. Biochem., 10 (2), 190–199.
[4] Al-Mur, B.A., 2021, Biological activities of Avicennia marina roots and leaves regarding their chemical constituents, Arabian J. Sci. Eng., 46 (6), 5407–5419.
[5] Belhadj-Salah, K., Sheikh, H.M., Al-Hasawi, Z.M., Selim, E.M., and Touliabah, H.E., 2022, In vitro antifungal and antibacterial potentials of organic extracts of Avicennia marina collected from Rabigh Lagoon, Red Sea Coasts in Saudi Arabia, Braz. J. Biol., 82, e265038.
[6] Ibrahim, H.A.H., Abdel-Latif, H.H., and Zaghloul, E.H., 2022, Phytochemical composition of Avicennia marina leaf extract, its antioxidant, antimicrobial potentials and inhibitory properties on Pseudomonas fluorescens biofilm, Egypt. J. Aquat. Res., 48 (1), 29–35.
[7] Albinhassan, T.H., Saleh, K.A., Barhoumi, Z., Alshehri, M.A., and Al-Ghazzawi, A.M., 2021, Anticancer, anti-proliferative activity of Avicennia marina plant extracts, J. Cancer Res. Ther., 17 (4), 879–886.
[8] Al-Jaghthmi, O.H.A., Zeid, I.E.M.E.A., Al-Ghamdi, K.M.S., Heba, H.M., and Ahmad, M.S., 2020, Antihyperglycemic, antioxidant and antiapoptotic effect of Rhizophora mucronata and Avicennia marina in streptozotocin-induced diabetic rats, Med. Arch., 74 (6), 421–427.
[9] Aljahdali, M.O., Molla, M.H.R., and Ahammad, F., 2021, Compounds identified from marine mangrove plant (Avicennia alba) as potential antiviral drug candidates against WDSV, an in-silico approach, Mar. Drugs, 19 (5), 253.
[10] Okla, M.K., Alatar, A.A., Al-Amri, S.S., Soufan, W.H., Ahmad, A., and Abdel-Maksoud, M.A., 2021, Antibacterial and antifungal activity of the extracts of different parts of Avicennia marina (Forssk.) Vierh, Plants, 10 (2), 252.
[11] Sukertiasih, N.K., Megawati, F., Meriyani, H., and Sanjaya, D.A., 2021, Studi retrospektif gambaran resistensi bakteri terhadap antibiotic, JINTO, 7 (2), 108–111.
[12] Fieulaine, S., Alves de Sousa, R., Maigre, L., Hamiche, K., Alimi, M., Bolla, J.M., Taleb, A., Denis, A., Pagès, J.M., Artaud, I., Meinnel, T., and Giglione, C., 2016, A unique peptide deformylase platform to rationally design and challenge novel active compounds, Sci. Rep., 6 (1), 35429.
[13] Abubakar, A.R., and Haque, M., 2020, Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes, J. Pharm. BioAllied Sci., 12 (1), 1–10.
[14] Tzanova, M., Atanasov, V., Yaneva, Z., Ivanova, D., and Dinev, T., 2020, Selectivity of current extraction techniques for flavonoids from plant materials, Processes, 8 (10), 1222.
[15] Djamaludin, H., Bintang, M., and Priosoeryanto, B.P., 2019, Cytotoxicity and antiproliferative effects of ethyl acetate fraction of Padina australis against MCM-B2 and K562 cell lines, J. Appl. Biol. Biotechnol., 7 (2), 25–29.
[16] Huang, J., Guo, X., Xu, T., Fan, L., Zhou, X., and Wu, S., 2019, Ionic deep eutectic solvents for the extraction and separation of natural products, J. Chromatogr. A, 1598, 1–19.
[17] Choi, Y.H., and Verpoorte, R., 2019, Green solvents for the extraction of bioactive compounds from natural products using ionic liquids and deep eutectic solvents, Curr. Opin. Food Sci., 26, 87–93.
[18] Kua, Y.L., and Gan, S., 2019, Natural deep eutectic solvent (NADES) as a greener alternative for the extraction of hydrophilic (polar) and lipophilic (non-polar) phytonutrients, Key Eng. Mater., 797, 20–28.
[19] Oomen, W.W., Begines, P., Mustafa, N.R., Wilson, E.G., Verpoorte, R., and Choi, Y.H., 2020, Natural deep eutectic solvent extraction of flavonoids of Scutellaria baicalensis as a replacement for conventional organic solvents, Molecules, 25 (3) 617.
[20] Liu, Y., Friesen, J.B., McAlpine, J.B., Lankin, D.C., Chen, S.H., and Pauli, G.F., 2018, Natural deep eutectic solvents: Properties, applications, and perspectives, J. Nat. Prod., 81 (3), 679–690.
[21] Dai, Y., van Spronsen, J., Witkamp, G.J., Verpoorte, R., and Choi, Y.H., 2013, Natural deep eutectic solvents as new potential media for green technology, Anal. Chim. Acta, 766, 61–68.
[22] Jurić, T., Mićić, N., Potkonjak, A., Milanov, D., Dodić, J., Trivunović, Z., and Popović, B.M., 2021, The evaluation of phenolic content, in vitro antioxidant and antibacterial activity of Mentha piperita extracts obtained by natural deep eutectic solvents, Food Chem., 362, 130226.
[23] Liu, Y., Li, J., Fu, R., Zhang, L., Wang, D., and Wang, S., 2019, Enhanced extraction of natural pigments from Curcuma longa L. using natural deep eutectic solvents, Ind. Crops Prod., 140, 111620.
[24] Rebocho, S., Mano, F., Cassel, E., Anacleto, B., Bronze M.R., Paiva, A., and Duarte, A.R.C., 2022, Fractionated extraction of polyphenols from mate tea leaves using a combination of hydrophobic/hydrophilic NADES, Curr. Res. Food Sci., 5, 571–580.
[25] Wang, T., Jiao, J., Gai, Q.Y., Wang, P., Guo, N., Niu, L.L., and Fu, Y.J., 2017, Enhanced and green extraction polyphenols and furanocoumarins from Fig (Ficus carica L.) leaves using deep eutectic solvents, J. Pharm. Biomed. Anal., 145, 339–345.
[26] Djamaludin, H., Hardoko, H., Dailami, M., Nurhadianty, V., Uluwwi, M.S., Muhammad, N.Y., and Jorghi, T.B., 2023, The compounds of tuna-shredded (Thunnus sp.) fortified banana blossom extracts’ antioxidant activity and xanthine oxidase enzyme inhibition capacity: an in vitro-in silico study, Indones. J. Chem., 23 (3), 782–795.
[27] Lipinski, C.A., 2004, Lead- and drug-like compounds: The rule-of-five revolution, Drug Discovery Today: Technol., 1 (4), 337–341.
[28] Jayaram, B., Singh, T., Mukherjee, G., Mathur, A., Shekhar, S., and Shekhar, V., 2012, Sanjeevini: A freely accessible web-server for target directed lead molecule discovery, BMC Bioinf., 13 (Suppl. 17), S7.
[29] Jasim, S.F., and Mustafa, Y.F., 2022, Synthesis, ADME study, and antimicrobial evaluation of novel naphthalene-based derivatives, J. Med. Chem. Sci., 5 (5), 793–807.
[30] Hardoko, H., Djamaludin, H., Suprayitno, E., Chamidah, A., Sulistiyati, T.D., Tambunan, J.E., Panjaitan, M.A.P., Puspitasari, Y.E., Putri, L.A.H.F.N., Uluwwi, M.S., Muhammad, N.Y., and Dharmawangsa, E., 2023, Shredded tuna fortified with banana blossoms as an anti-diabetic food candidate: An investigational in silico study, J. Microbiol., Biotechnol. Food Sci., 13 (2), e9164.
[31] Banerjee, P., Eckert, A.O., Schrey, A.K., and Preissner, R., 2018, ProTox-II: A webserver for the prediction of toxicity of chemicals, Nucleic Acids Res., 46 (W1), W257–W263.
[32] Daina, A., Michielin, O., and Zoete, V., 2017, SwissADME: A free web tool to evaluate pharmacokinetics, drug- likeness and medicinal chemistry friendliness of small molecules, Sci. Rep., 7 (1), 42717.
[33] Alhaddad, Z.A., Tanod, W.A., and Wahyudi, D., 2019, Bioaktivitas antibakteri dari ekstrak daun mangrove Avicennia sp., J. Kelaut., 12 (1), 12–22.
[34] Cockerill, F.R., Clinical and Laboratory Standards Institute, 2012, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard—Ninth Edition, CLSI Document M07–A9, Clinical and Laboratory Standards Institute, Wayne, PA, US.
[35] Wikene, K.O., Rukke, H.V., Bruzell, E., and Tønnesen, H.H., 2017, Investigation of the antimicrobial effect of natural deep eutectic solvents (NADES) as solvents in antimicrobial photodynamic therapy, J. Photochem. Photobiol., B, 171, 27–33.
[36] Zhao, B.Y., Xu, P., Yang, F.X., Wu, H., Zong, M.H., and Lou, W.Y., 2015, Biocompatible deep eutectic solvents based on choline chloride: Characterization and application to the extraction of rutin from Sophora japonica, ACS Sustainable Chem. Eng., 3 (11), 2746–2755.
[37] Tsvetov, N., Paukshta, O., Fokina, N., Volodina, N., and Samarov, A., 2023, Application of natural deep eutectic solvents for extraction of bioactive components from Rhodiola rosea (L.), Molecules, 28 (2), 912.
[38] Chinemerem Nwobodo, D., Ugwu, M.C., Oliseloke Anie, C., Al-Ouqaili, M.T.S., Chinedu Ikem, J., Victor Chigozie, U., and Saki, M., 2022, Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace, J. Clin. Lab. Anal., 36 (9), e24655.
[39] Thatoi, H., Samantaray, D., and Das, S.K., 2016, The genus Avicennia, a pioneer group of dominant mangrove plant species with potential medicinal values: A review, Front. Life Sci., 9 (4), 267–291.
[40] Hidayati, A., Siswandono, S., and Riwanti, P., 2021, Studi in silico dan hubungan kuantitatif struktur terhadap aktivitas tanaman mangrove (Avicennia marina (Forssk.) Vierh.) sebagai antidiabetes, J. Pharm. Sci. Technol., 2 (1), 33–46.
[41] Owoloye, A.J., Ligali, F.C., Enejoh, O.A., Musa, A.Z., Aina, O., Idowu, E.T., and Oyebola, K.M., 2022, Molecular docking, simulation and binding free energy analysis of small molecules as PfHT1 inhibitors, PLoS One, 17 (8), e0268269.
[42] Merdja, K., Bendeddouche, C.K., Drissi, M., Kaouche, F.C., Medjahed, N., Padrón, J.M., Debdab, M., Rahmouni, M., and Belarbi, E.H., 2023, Synthesis, thermal, DFT calculations, HOMO-LUMO, MEP, and molecular docking analysis of new derivatives of imidazolin-4-ones, Indones. J. Chem., 23 (6), 1722–1734.
[43] Whatin, U.F., Manguntungi, B., Djamaludin, H., Handoko, H., Vanggy, L.R., Fenylestari, G., and Kusuma, A.B., 2023, Bioprospecting of Limosilactobacillus fermentum strain MH 2.3 for anti-diabetic properties: From biochemical to molecular docking approaches, Philipp. J. Sci., 152 (3), 1015–1025.
[44] Hernández-Santoyo, A., Tenorio-Barajas, A.Y., Altuzar, V., Vivanco-Cid, H., and Mendoza-Barrera, C., 2013, “Protein-Protein and Protein-Ligand Docking” in Protein Engineering – Technology and Application, Eds. Ogawa, T., IntechOpen, Rijeka, Croatia, 63–81.
[45] Toppo, A.L., Yadav, M., Dhagat, S., Ayothiraman, S., and Eswari, J.S., 2021, Molecular docking and ADMET analysis of synthetic statins for HMG-CoA reductase inhibition activity, Indian J. Biochem. Biophys., 58 (2), 127–134.
[46] Alshwyeh, H.A., 2020, Phenolic profiling and antibacterial potential of Saudi Arabian native date palm (Phoenix dactylifera) cultivars, Int. J. Food Prop., 23 (1), 627–638.
[47] Manivannan, R., Aeganathan, R., and Prabakaran, K., 2015, Anti-microbial and anti-inflammatory flavonoid constituents from the leaves of Lawsonia inermis, J. Phytopharm., 4 (4), 212–216.
[48] Karimi, E., Jaafar, H.Z.E., and Ahmad, S., 2011, Phytochemical analysis and antimicrobial activities of methanolic extracts of leaf, stem and root from different varieties of Labisa pumila Benth, Molecules, 16 (6), 4438–4450.
[49] Rampogu, S., Zeb A., Baek, A., Park, C., Son, M., and Lee, K.W., 2018, Discovery of potential plant-derived peptide deformylase (PDF) inhibitors for multidrug-resistant bacteria using computational studies, J. Clin. Med., 7 (12), 563.
[50] Chen, X., Xu, L., Guo, S., Wang, Z., Jiang, L., Wang, F., Zhang, J., and Liu, B., 2019, Profiling and comparison of the metabolites of diosmetin and diosmin in rat urine, plasma and feces using UHPLC-LTQ-Orbitrap MSn, J. Chromatogr. B, 1124, 58–71.
[51] Drwal, M.N., Banerjee, P., Dunkel, M., Wettig, M.R., and Preissner, R., 2014, ProTox: A web server for the in silico prediction of rodent oral toxicity, Nucleic Acids Res., 42 (W1), W53–W58.
DOI: https://doi.org/10.22146/ijc.92444
Article Metrics
Abstract views : 216 | views : 196Copyright (c) 2024 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.