Synthesis of Aragonite from Precipitated Calcium Carbonate: A Pilot Scale Study
Ellyta Sari(1), Reni Desmiarti(2), Zulhadjri Zulhadjri(3), Matlal Fajri Alif(4), Maulana Yusup Rosadi(5), Syukri Arief(6*)
(1) Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Bung Hatta, Jl. Gajah Mada No. 19, Padang 25173, Indonesia
(2) Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Bung Hatta, Jl. Gajah Mada No. 19, Padang 25173, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Andalas University, Limau Manis Campus, Padang 25163, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Andalas University, Limau Manis Campus, Padang 25163, Indonesia
(5) Department of Civil Engineering, Faculty of Engineering, Universitas Borobudur, Jl. Kali Malang No. 1, Jakarta 13620, Indonesia
(6) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Andalas University, Limau Manis Campus, Padang 25163, Indonesia
(*) Corresponding Author
Abstract
The CO2 mineralization pathway is considered a promising option for carbon capture usage and storage because the captured CO2 can be permanently stored, and secondly industrial waste (i.e., petrochemical refinery, lime, and cement kiln dust) can be recycled into value-added carbonate materials by controlling the crystal polymorphs and properties of mineral carbonate. This study investigated the CO2 mineralization utilized for the synthesis of precipitated calcium carbonate (PCC) via low temperatures at 30 °C and 55 °C with the addition of 50 and 75 g/L of ammonium chloride (NH4Cl). The pilot scale of PCC production was established to simultaneously produce PCC with low energy demand by reporting the feasibility of economic analysis and to develop the mineral carbonation that can transform limestones and CO2, which was captured from the petrochemical refinery process into economically valuable PCC. It is found that the aragonite phase of PCC can be generated at a room temperature of 30 °C by adjusting the CO2 flow rate. In addition, the use of NH4Cl, which transformed into ammonium carbonate ((NH4)2CO3) during the calcination process, can maintain the stable aragonite phase by varying the NH4Cl concentration.
Keywords
References
[1] Krishnan, A., Nighojkar, A., and Kandasubramanian, B., 2023, Emerging towards zero carbon footprint via carbon dioxide capturing and sequestration, Carbon Capture Sci. Technol., 9, 100137.
[2] Samanta, N.S., Anweshan, A., Mondal, P., Bora, U., and Purkait, M.K., 2023, Synthesis of precipitated calcium carbonate from LD-slag using CO2, Mater. Today Commun., 36, 106588.
[3] Yin, T., Yin, S., Srivastava, A., and Gadikota, G., 2022, Regenerable solvents mediate accelerated low temperature CO2 capture and carbon mineralization of ash and nano-scale calcium carbonate formation, Resour., Conserv. Recycl., 180, 106209.
[4] Gadikota, G., 2021, Carbon mineralization pathways for carbon capture, storage and utilization, Commun. Chem., 4 (1), 23.
[5] Ji, L., Yu, H., Zhang, R., French, D., Grigore, M., Yu, B., Wang, X., Yu, J., and Zhao, S., 2019, Effects of fly ash properties on carbonation efficiency in CO2 mineralisation, Fuel Process. Technol., 188, 79–88.
[6] Ding, W., Fu, L., Ouyang, J., and Yang, H., 2014, CO2 mineral sequestration by wollastonite carbonation, Phys. Chem. Miner., 41 (7), 489–496.
[7] Tan, W.L., Tan, H.F., Ahmad, A.L., and Leo, C.P., 2021, Carbon dioxide conversion into calcium carbonate nanoparticles using membrane gas absorption, J. CO2 Util., 48, 101533.
[8] Hong, S., Sim, G., Moon, S., and Park, Y., 2020, Low-temperature regeneration of amines integrated with production of structure-controlled calcium carbonates for combined CO2 capture and utilization, Energy Fuels, 34 (3), 3532–3539.
[9] Liu, M., and Gadikota, G., 2020, Single-step, low temperature and integrated CO2 capture and conversion using sodium glycinate to produce calcium carbonate, Fuel, 275, 117887.
[10] Alturki, A., 2022, The global carbon footprint and how new carbon mineralization technologies can be used to reduce CO2 emissions, ChemEngineering, 6 (3), 44.
[11] Kelemen, P.B., McQueen, N., Wilcox, J., Renforth, P., Dipple, G., and Vankeuren, A.P., 2020, Engineered carbon mineralization in ultramafic rocks for CO2 removal from air: Review and new insights, Chem. Geol., 550, 119628.
[12] de Oliveira Costa Souza Rosa, C., da Silva Christo, E., Costa, K.A., and dos Santos, L., 2020, Assessing complementarity and optimizing the combination of intermittent renewable energy sources using ground measurements, J. Cleaner Prod., 258, 120946.
[13] Mohd Pauzi, M.M., Azmi, N., and Lau, K.K., 2022, Emerging solvent regeneration technologies for CO2 capture through offshore natural gas purification processes, Sustainability, 14 (7), 4350.
[14] Ye, J., Liu, S., Fang, J., Zhang, H., Zhu, J., and Guan, X., 2023, Synthesis of aragonite whiskers by co-carbonation of waste magnesia slag and magnesium sulfate: Enhancing microstructure and mechanical properties of Portland cement paste, Buildings, 13 (11), 2888.
[15] Zhai, M., Guo, L., Sun, L., Zhang, Y., Dong, P., and Shi, W., 2016, Desulfurization performance of fly ash and CaCO3 compound absorbent, Powder Technol., 305, 553–561.
[16] de Beer, M., Maree, J.P., Liebenberg, L., and Doucet, F.J., 2014, Conversion of calcium sulphide to calcium carbonate during the process of recovery of elemental sulphur from gypsum waste, Waste Manage., 34 (11), 2373–2381.
[17] Ozyhar, T., Marchi, M., Facciotto, G., Bergante, S., and Luster, J., 2022, Combined application of calcium carbonate and NPKS fertilizer improves early-stage growth of poplar in acid soils, For. Ecol. Manage., 514, 120211.
[18] Carella, F., Degli Esposti, L., Adamiano, A., and Iafisco, M., 2021, The use of calcium phosphates in cosmetics, state of the art and future perspective, Materials, 14 (21), 6398.
[19] Saulat, H., Cao, M., Khan, M.M., Khan, M., Khan, M.M., and Rehman, A., 2020, Preparation and applications of calcium carbonate whisker with a special focus on construction materials, Constr. Build. Mater., 236, 117613.
[20] Kogo, M., Umegaki, T., and Kojima, Y., 2019, Effect of pH on formation of single-phase vaterite, J. Cryst. Growth, 517, 35–38.
[21] Hu, Y.B., Wolthers, M., Wolf-Gladrow, D.A., and Nehrkle, G., 2015, Effect of pH and phosphate on calcium carbonate polymorphs precipitated at near-freezing temperature, Cryst. Growth Des., 15 (4), 1596–1601.
[22] Altiner, M., and Yildirim, M., 2017, Production and characterization of synthetic aragonite prepared from dolomite by eco-friendly leaching-carbonation process, Adv. Powder Technol., 28 (2), 553–564.
[23] Liendo, F., Arduino, M., Deorsola, F.A., and Bensaid, S., 2022, Factors controlling and influencing polymorphism, morphology and size of calcium carbonate synthesized through carbonation route: A review, Powder Technol., 398, 117050.
[24] Eichinger, S., Boch, R., Baldermann, A., Goetschl, K., Wenighofer, R., Hoffmann, R., Stamm, F., Hippler, D., Grengg, C., Immenhauser, A., and Dietzel, M., 2023, Unraveling calcite-to-aragonite evolution from a subsurface fluid – Formation pathway, interfacial reactions and nucleation effects, Chem. Geol., 641, 121768.
[25] Bergwerff, L., and van Paassen, L.A., 2021, Review and recalculation of growth and nucleation kinetics for calcite, vaterite and amorphous calcium carbonate, Crystals, 11 (11), 1318.
[26] Ren, E., Tang, S., Liu, C., Yue, H., Li, C., and Liang, B., 2018, Carbon dioxide mineralization for the disposition of blast-furnace slug: reaction intensification using NaCl solutions, Greenhouse Gases: Sci. Technol., 10 (2), 436–448.
[27] Asakai, T., Suzuki, T., Miura, T., and Hioki, A., 2014, Certified reference material for ammonium ions in high-purity ammonium chloride: Influence of pH on coulometric titration of ammonium ions with electrogenerated hypobromite, Microchem. J., 114, 203–209.
[28] Arifin, Z., Zainuri, M., Cahyono, Y., and Darminto, D., 2018, The influence of temperature and gas flow rate on the formation CaCO3 vaterite phase, IOP Conf. Ser.: Mater. Sci. Eng., 395 (1), 012004.
[29] Shirsath, S.R., Sonawane, S.H., Saini, D.R., and Pandit, A.B., 2015, Continuous precipitation of calcium carbonate using sonochemical reactor, Ultrason. Sonochem., 24, 132–139.
[30] Tone, T., and Koga, N., 2023, Interplay between thermally induced aragonite-calcite transformation and multistep dehydration in a seawater spiral shell (Euplica scripta), Processes, 11 (6), 1650.
[31] Jimoh, O.A., Okoye, P.U., Otitoju, T.A., and Ariffin, K.S., 2018, Aragonite precipitated calcium carbonate from magnesium rich carbonate rock for polyethersulfone hollow fibre membrane application, J. Cleaner Prod., 195, 79–92.
[32] Marin Rivera, R., and Van Gerven, T., 2020, Production of calcium carbonate with different morphology by simultaneous CO2 capture and mineralization, J. CO2 Util., 41, 101241.
[33] Wang, J., Li, Z., Park, A.H.A., and Petit, C., 2015, Thermodynamic and kinetic studies of the MgCl2-NH4Cl-NH3-H2O system for the production of high purity MgO from calcined low-grade magnesite, AIChE J., 61 (6), 1933–1946.
[34] Mei, X., Zhao, Q., Li, Y., Min, Y., Liu, C., Saxen, H., and Zevenhoven, R., 2022, Phase transition and morphology of precipitated calcium carbonate (PCC) in the CO2 mineralization process, Fuel, 328, 125259.
[35] Lu, H., Huang, Y.C., Hunger, J., Gebauer, D., Cölfen, H., and Bonn, M., 2021, Role of water in CaCO3 biomineralization, J. Am. Chem. Soc., 143 (4), 1758–1762.
[36] Lu, J., Ruan, S., Liu, Y., Wang, T., Zeng, Q., and Yang, D., 2022, Morphological characteristics of calcium carbonate crystallization in CO2 pre-cured aerated concrete, RSC Adv., 12 (23), 14610–14620.
[37] Grimes, C.J., Hardcastle, T., Manga, M.S., Mahmud, T., and York, D.W., 2020, Calcium carbonate particle formation through precipitation in a stagnant bubble and a bubble column reaction, Cryst. Growth Des., 20 (8), 5572–5582.
[38] Li, W., Huang, Y., Wang, T., Fang, M., and Li, Y., 2022, Preparation of calcium carbonate nanoparticles from waste carbide slag based on CO2 mineralization, J. Cleaner Prod., 363, 132463.
[39] Minkowicz, L., Dagan, A., Uvarov, V., and Benny, O., 2021, Controlling calcium carbonate particle morphology, size, and molecular order using silicate, Materials, 14 (13), 3525.
[40] Kajiyama, S., Nishimura, T., Sakamoto, T., and Kato, T., 2014, Aragonite nanorods in calcium carbonate/polymer hybrids formed through self-organization process from amorphous calcium carbonate solution, Small, 10 (8), 1634–1641.
[41] Ramakhrisna, C., Thenepalli, T., Huh, J.H., and Ahn, J.W., 2016, Preparation of needle like aragonite precipitated calcium carbonate (PCC) from dolomite by carbonation method, J. Korean Ceram. Soc., 53 (1), 7–12.
[42] Luo, M., Zhang, G., Fang, Y., Cao, L., Guo, Z., Wang, K., and Li, J., 2023, Calcium carbonate crystallization process from the mineralization of calcium chloride waste, Sep. Purif. Technol., 319, 124066.
[43] Yoo, Y., Kim, I., Lee, D., Yong Choi, W., Choi, J., Jang, K., Park, J., and Kang, D., 2022, Review of contemporary research on inorganic CO2 utilization via CO2 conversion metal carbonate-based materials, J. Ind. Eng. Chem., 116, 60–74.
[44] Chang, R., Choi, D., Kim, M.H., and Park, Y., 2017, Tuning crystal polymorphisms and structural investigation of precipitated calcium carbonates for CO2 mineralization, ACS Sustainable Chem. Eng., 5 (1), 1659–1667.
DOI: https://doi.org/10.22146/ijc.92169
Article Metrics
Abstract views : 940 | views : 277 | views : 99Copyright (c) 2024 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.