In Silico Study of Aptamer Specificity for Detection of Insulin as Development for Diabetes Mellitus Diagnosis
Dinda Exelsa Mulyani(1), Iman Permana Maksum(2*), Muhammad Yusuf(3)
(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang km 21, Jatinangor 45363, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang km 21, Jatinangor 45363, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang km 21, Jatinangor 45363, Indonesia
(*) Corresponding Author
Abstract
Keywords
Full Text:
Full Text PDFReferences
[1] Liu, S., Shen, Z., Deng, L., and Liu, G., 2022, Smartphone assisted portable biochip for non-invasive simultaneous monitoring of glucose and insulin towards precise diagnosis of prediabetes/diabetes, Biosens. Bioelectron., 209, 114251.
[2] International Diabetes Federation, 2021, IDF Diabetes Atlas, 10th Ed., International Diabetes Federation, Brussels, Belgium.
[3] Kahanovitz, L., Sluss, P.M., and Russell, S.J., 2017, Type 1 diabetes - A clinical perspective, Point Care, 16 (1), 37–40.
[4] Zaccardi, F., Webb, D.R., Yates, T., and Davies, M.J., 2016, Pathophysiology of type 1 and type 2 diabetes mellitus: A 90-year perspective, Postgrad. Med. J., 92 (1084), 63–69.
[5] Priatna, A.S., Fadil, R.M.R., and Susanto, N.H., 2017, Blood glucose level and HbA1C in pediatric patients with diabetes mellitus type 1, Althea Med. J., 4 (2), 217–220.
[6] American Diabetes Association Professional Practice Committee, 2021, Classification and diagnosis of diabetes: Standards of medical care in diabetes-2022, Diabetes Care, 45 (Suppl. 1), S17–S38.
[7] International Expert Committee, 2009, International expert committee report on the role of the A1C assay in the diagnosis of diabetes, Diabetes Care, 32 (7), 1327–1334.
[8] Fargion, S., Dongiovanni, P., Guzzo, A., Colombo, S., Valenti, L., and Fracanzani, A.L., 2005, Iron and insulin resistance, Aliment. Pharmacol. Ther., 22 (S2), 61–63.
[9] Luong, A.D., Roy, I., Malhotra, B.D., and Luong, J.H.T., 2021, Analytical and biosensing platforms for insulin: A review, Sens. Actuators Rep., 3, 100028.
[10] Gorai, B., and Vashisth, H., 2022, Progress in simulation studies of insulin structure and function, Front. Endocrinol., 13, 908724.
[11] Radi, A.E., and Abd-Ellatief, M.R., 2021, Electrochemical aptasensors: Current status and future perspectives, Diagnostics, 11 (1), 104.
[12] Villalonga, A., Pérez-Calabuig, A.M., and Villalonga, R., 2020, Electrochemical biosensors based on nucleic acid aptamers, Anal. Bioanal. Chem., 412 (1), 55–72.
[13] Mulyani, D.E., and Maksum, I.P., 2023, Detection of biomarker using aptasensors to determine the type of diabetes, Diagnostics, 13 (12), 2035.
[14] Anand, A., Chen, C.Y., Chen, T.H., Liu, Y.C., Sheu, S.Y., and Chen, Y.T., 2021, Detecting glycated hemoglobin in human blood samples using a transistor-based nanoelectronic aptasensor, Nano Today, 41, 101294.
[15] Mulyani, R., Yumna, N., Maksum, I.P., Subroto, T., and Hartati, Y.W., 2022, Optimization of aptamer-based electrochemical biosensor for ATP detection using screen-printed carbon electrode/gold nanoparticles (SPCE/AuNP), Indones. J. Chem., 22 (5), 1256–1268.
[16] Rustaman, R., Rafi Rahmawan, R., and Maksum, I.P., 2023, In silico study of aptamer specificity for detection of adenosine triphosphate (ATP) as biosensor development for mitochondria diabetes diagnosis, Turk. Comput. Theor. Chem., 7 (2), 58–69.
[17] Zhang, D., Ma, J., Meng, X., Xu, Z., Zhang, J., Fang, Y., and Guo, Y., 2019, Electrochemical aptamer-based microsensor for real-time monitoring of adenosine in vivo, Anal. Chim. Acta, 1076, 55–63.
[18] Abrantes, M., Rodrigues, D., Domingues, T., Nemala, S.S., Monteiro, P., Borme, J., Alpuim, P., and Jacinto, L., 2022, Ultrasensitive dopamine detection with graphene aptasensor multitransistor arrays, J. Nanobiotechnol., 20 (1), 495.
[19] Kubo, I., and Eguchi, T., 2015, Study on electrochemical insulin sensing utilizing a DNA aptamer-immobilized gold electrode, Materials, 8 (8), 4710–4719.
[20] Yoshida, W., Mochizuki, E., Takase, M., Hasegawa, H., Morita, Y., Yamazaki, H., Sode, K., and Ikebukuro, K., 2009, Selection of DNA aptamers against insulin and construction of an aptameric enzyme subunit for insulin sensing, Biosens. Bioelectron., 24 (5), 1116–1120.
[21] Zeng, X., Wang, H., Zeng, Y., Yang, Y., Zhang, Z., and Li, L., 2023, Label-free aptasensor for the ultrasensitive detection of insulin via a synergistic fluorescent turn-on strategy based on G-quadruplex and AIEgens, J. Fluoresc., 33 (3), 955–963.
[22] Zhao, M., Liao, L., Wu, M., Lin, Y., Xiao, X., and Nie, C., 2012, Double-receptor sandwich supramolecule sensing method for the determination of ATP based on uranyl–salophen complex and aptamer, Biosens. Bioelectron., 34 (1), 106–111.
[23] Asadpour, F., Mazloum-Ardakani, M., Hoseynidokht, F., and Moshtaghioun, S.M., 2021, In situ monitoring of gating approach on mesoporous silica nanoparticles thin-film generated by the EASA method for electrochemical detection of insulin, Biosens. Bioelectron., 180, 113124.
[24] Pertiwi, W., Muharram, L.H., and Maulana, F.A., 2022, Prediksi struktur 3D L-asparaginase bakteri laut Vibrio sp. AND4 dengan metode homology modelling, JSFK, 9 (2), 121–128.
DOI: https://doi.org/10.22146/ijc.91602
Article Metrics
Abstract views : 2519 | views : 1217Copyright (c) 2024 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.