LC-HRMS-Based Metabolomics Approach Reveals Antioxidant Compounds from Centella asiatica Leaves Extracts

https://doi.org/10.22146/ijc.90782

Riva Silvia(1), Wulan Tri Wahyuni(2*), Eti Rohaeti(3), Siti Aisyah(4), Dewi Anggraini Septaningsih(5), Alfi Hudatul Karomah(6), Mohamad Rafi(7)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Jl. Tanjung Kampus IPB Dramaga, Bogor 16680, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Jl. Tanjung Kampus IPB Dramaga, Bogor 16680, Indonesia; Tropical Biopharmaca Research Center, IPB University, Jl. Taman Kencana No. 3, Kampus IPB Taman Kencana, Bogor 16128, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Jl. Tanjung Kampus IPB Dramaga, Bogor 16680, Indonesia; Tropical Biopharmaca Research Center, IPB University, Jl. Taman Kencana No. 3, Kampus IPB Taman Kencana, Bogor 16128, Indonesia
(4) Chemistry Program Study, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudi No. 229, Bandung 40154, Indonesia
(5) Advanced Research Laboratory, IPB University, Jl. Palem, Kampus IPB Dramaga, Bogor 16680, Indonesia
(6) Advanced Research Laboratory, IPB University, Jl. Palem, Kampus IPB Dramaga, Bogor 16680, Indonesia
(7) Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Jl. Tanjung Kampus IPB Dramaga, Bogor 16680, Indonesia; Tropical Biopharmaca Research Center, IPB University, Jl. Taman Kencana No. 3, Kampus IPB Taman Kencana, Bogor 16128, Indonesia; Advanced Research Laboratory, IPB University, Jl. Palem, Kampus IPB Dramaga, Bogor 16680, Indonesia
(*) Corresponding Author

Abstract


Centella asiatica is a medicinal plant widely used as a traditional medicine due to several biological activities, such as antioxidants in Indonesia. This study aims to identify the active antioxidant compounds of C. asiatica leaves extract using a liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS)-based metabolomics approach. Extracts were prepared using different concentrations of ethanol p.a., i.e. 70% ethanol, 50% ethanol, 30% ethanol, and water. Antioxidant activity was tested using the 2,2-diphenyl-1-picrylhydrazyl method. The results showed the highest antioxidant activity was C. asiatica extracted by 70% ethanol with IC50 of 72.48 ± 2.42 µg/mL. The positive control was ascorbic acid, having an IC50 value of 3.38 ± 0.04 µg/mL. Ascorbic acid and 70% ethanol extract have strong antioxidant activity. Metabolite profiling using LC-MS/MS could identify 35 metabolites consisting of flavonoids, fatty acids, phenolics, terpenes, and several other groups of compounds. Orthogonal partial least squares-discriminant analysis classified the metabolites into active (ethanol 70% and ethanol 50%) and inactive (ethanol p.a., ethanol 30%, and water) antioxidants. Five metabolites have potential as antioxidants, namely 4,5-dicaffeoylquinic acid (11), kaempferol (13), and three unknown compounds.

Keywords


antioxidant; C. asiatica; LC-MS/MS; metabolomics

Full Text:

Full Text PDF


References

[1] Belwal, T., Andola, H.C., Atanassova, M.S., Joshi, B., Suyal, R., Thakur, S., Bisht, A., Jantwal, A., Bhatt, I.D., and Rawal, R.S., 2019, "Chapter 3.22 - Gotu Kola (Centella asiatica)" in Nonvitamin and Nonmineral Nutritional Supplements, Eds. Nabavi, S.M., and Silva, A.S., Academic Press, Cambridge, MA, US, 265–275.

[2] Yasurin, P., Sriariyanun, M., and Phusantisampan, T., 2015, Review: The bioavailability activity of Centella asiatica, KMUTNB Int. J. Appl. Sci. Technol., 9 (1), 1–9.

[3] Arora, R., Kumar, R., Agarwal, A., Reeta, K.H., and Gupta, Y.K., 2018, Comparison of three different extracts of Centella asiatica for anti-amnesic, antioxidant and anticholinergic activities: In vitro and in vivo study, Biomed. Pharmacother., 105, 1344–1352.

[4] Ju Ho, P., Jun Sung, J., Ki Cheon, K., and Jin Tae, H., 2018, Anti-inflammatory effect of Centella asiatica phytosome in a mouse model of phthalic anhydride-induced atopic dermatitis, Phytomedicine, 43, 110–119.

[5] Vasavi, H.S., Arun, A.B., and Rekha, P.D., 2016, Anti-quorum sensing activity of flavonoid-rich fraction from Centella asiatica L. against Pseudomonas aeruginosa PAO1, J. Microbiol., Immunol. Infect., 49 (1), 8–15.

[6] Rafi, M., Nomi, A.G., Septaningsih, D.A., Heryanto, R., and Putri, S.P., 2022, Quantitative HPLC and FTIR-based metabolomics for clustering Centella asiatica cultivation ages and evaluation of their radical scavenging activity, Sains Malays., 51 (6), 1789–1797.

[7] Ncube, E.N., Steenkamp, P.A., Madala, N.E., and Dubery, I.A., 2017, Metabolite profiling of the undifferentiated cultured cells and differentiated leaf tissues of Centella asiatica, Plant Cell, Tissue Organ Cult., 129 (3), 431–443.

[8] Kunjumon, R., Johnson, A.J., and Baby, S., 2022, Centella asiatica: Secondary metabolites, biological activities and biomass sources, Phytomed. Plus, 2 (1), 100176.

[9] Mohapatra, P., Ray, A., Jena, S., Nayak, S., and Mohanty, S., 2021, Influence of extraction methods and solvent system on the chemical composition and antioxidant activity of Centella asiatica L. leaves, Biocatal. Agric. Biotechnol., 33, 101971.

[10] Kasote, D.M., Katyare, S.S., Hegde, M.V., and Bae, H., 2015, Significance of antioxidant potential of plants and its relevance to therapeutic applications, Int. J. Biol. Sci., 11 (8), 982–991.

[11] Yaermaimaiti, S., Wu, T., and Aisa, H.A., 2021, Bioassay-guided isolation of antioxidant, antimicrobial, and antiviral constituents of Cordia dichotoma fruits, Ind. Crops Prod., 172, 113977.

[12] García-Pérez, P., Miras-Moreno, B., Lucini, L., and Gallego, P.P., 2021, The metabolomics reveals intraspecies variability of bioactive compounds in elicited suspension cell cultures of three Bryophyllum species, Ind. Crops Prod., 163, 113322.

[13] Quansah, E., and Karikari, T.K., 2016, Potential role of metabolomics in the improvement of research on traditional African medicine, Phytochem. Lett., 17, 270–277.

[14] Perumal, V., Khatib, A., Uddin Ahmed, Q., Fathamah Uzir, B., Abas, F., Murugesu, S., Zuwairi Saiman, M., Primaharinastiti, R., and El-Seedi, H., 2021, Antioxidants profile of Momordica charantia fruit extract analyzed using LC-MS-QTOF-based metabolomics, Food Chem.: Mol. Sci., 2, 100012.

[15] Mukherjee, P.K., 2019, “Chapter 13 - Bioassay-Guided Isolation and Evaluation of Herbal Drugs” in Quality Control and Evaluation of Herbal Drugs, Elsevier, Amsterdam, Netherlands, 515–537.

[16] Zhang, S., Liu, Z., Li, X., Abubaker, M.A., Liu, X., Li, Z., Wang, X., Zhu, X., Zhang, J., and Chen, X., 2022, Comparative study of three raspberry cultivar (Rubus idaeus L.) leaves metabolites: Metabolome profiling and antioxidant activities, Appl. Sci., 12 (3), 990.

[17] Sawczuk, R., Karpinska, J., Filipowska, D., Bajguz, A., and Hryniewicka, M., 2022, Evaluation of total phenols content, anti-DPPH activity and the content of selected antioxidants in the honeybee drone brood homogenate, Food Chem., 368, 130745.

[18] Sayed, A.M., Sherif, N.H., El-Gendy, A.O., Shamikh, Y.I., Ali, A.T., Attia, E.Z., El-Katatny, M.H., Khalifa, B.A., Hassan, H.M., and Abdelmohsen, U.R., 2020, Metabolomic profiling and antioxidant potential of three fungal endophytes derived from Artemisia annua and Medicago sativa, Nat. Prod. Res., 36 (9), 2404–2408.

[19] Alcazar Magana, A., Wright, K., Vaswani, A., Caruso, M., Reed, R.L., Bailey, C.F., Nguyen, T., Gray, N.E., Soumyanath, A., Quinn, J., Stevens, J.F., and Maier, C.S., 2020, Integration of mass spectral fingerprinting analysis with precursor ion (MS1) quantification for the characterisation of botanical extracts: Application to extracts of Centella asiatica (L.) Urban, Phytochem. Anal., 31 (6), 722–738.

[20] Kumar, K., 2018, Chemometric assisted correlation optimized warping of chromatograms: Optimizing the computational time for correcting the drifts in chromatographic peak positions, Anal. Methods, 10 (9), 1006–1014.

[21] Wang, P., Zhong, L., Yang, H., Zhu, F., Hou, X., Wu, C., Zhang, R., and Cheng, Y., 2022, Comparative analysis of antioxidant activities between dried and fresh walnut kernels by metabolomic approaches, LWT, 155, 112875.

[22] Kang, C., Zhang, Y., Zhang, M., Qi, J., Zhao, W., Gu, J., Guo, W., and Li, Y., 2022, Screening of specific quantitative peptides of beef by LC–MS/MS coupled with OPLS-DA, Food Chem., 387, 132932.

[23] Hrbek, V., Rektorisova, M., Chmelarova, H., Ovesna, J., and Hajslova, J., 2018, Authenticity assessment of garlic using a metabolomic approach based on high resolution mass spectrometry, J. Food Compos. Anal., 67, 19–28.

[24] Maulidiani, M., Abas, F., Khatib, A., Shitan, M., Shaari, K., and Lajis, N.H., 2013, Comparison of Partial Least Squares and Artificial Neural Network for the prediction of antioxidant activity in extract of Pegaga (Centella) varieties from 1H Nuclear Magnetic Resonance spectroscopy, Food Res. Int., 54 (1), 852–860.



DOI: https://doi.org/10.22146/ijc.90782

Article Metrics

Abstract views : 148 | views : 106


Copyright (c) 2024 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.