Synthesis, Structure, Antibacterial Activity, and Hirshfeld Surface Analysis of Complex [Co(4-ampy)4(NCS)2]·CO2
Linggar Agil Savitri(1), Faaza'izzahaq Setta Putra(2), Sutandyo Dwija Laksmana(3), Dewi Mariyam(4), I Wayan Dasna(5*)
(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, Indonesia
(3) Center of Advanced Material for Renewable Energy, Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, Indonesia; Center of Advanced Material for Renewable Energy, Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, Indonesia
(*) Corresponding Author
Abstract
The [Co(4-ampy)4(NCS)]2·CO2 complex compound was successfully synthesized using the reflux method from the reaction between CoCl2·6H2O, 4-aminopyridine, and KSCN in methanol solvent for 6 h at 64 °C. The synthesized compound is a dark purple cube-shaped crystal with a melting point of 209 °C. FTIR test showed the presence of isothiocyanate anion at C=N stretching vibration wavenumber 1633 cm−1, C–N vibration on amine group belonging to 4-aminopyridine ligand at 1217 cm−1, and C=N vibration of pyridine aromatic group at 1334 cm−1. Single crystal X-ray diffraction data refinement results show the complex compound has octahedral geometry in a cubic lattice with space group Pn̄3n with lattice parameters a = b = c = 16.426(3) Å and α = β = γ = 90°. According to the crystal data, there was one molecule of CO2 in the crystal packing of the complex. Hirshfeld surface analysis showed the major interaction contributions from C⋯H/H⋯C, H⋯H, S⋯H/H⋯S, and O⋯H/H⋯O. The antibacterial activity test results showed that the activity of the synthesized complex was more active against Staphylococcus aureus but less effective against Escherichia coli.
Keywords
Full Text:
Full Text PDFReferences
[1] Riaz, S., Zafar, W., Hassan, A.U., and Sumrra, S.H., 2021, Importance of coordination chemistry and role of sulfonamide derived compounds in biological activity – A review, South. J. Res., 1 (1), 53–69.
[2] Islam, F., Hossain, M.A., Shah, N.M., Barua, H.T., Kabir, M.A., Khan, M.J., and Mullick, R., 2015, Synthesis, characterization, and antimicrobial activity studies of Ni(II) complex with pyridine as a ligand, J. Chem., 2015 (1), 525239.
[3] Tsague Chimaine, F., Yufanyi, D.M., Colette Benedicta Yuoh, A., Eni, D.B., and Agwara, M.O., 2016, Synthesis, crystal structure, photoluminescent and antimicrobial properties of a thiocyanato-bridged copper(II) coordination polymer, Cogent Chem., 2 (1), 1253905.
[4] Yildiz, Y., 2017, “General Aspects of the Cobalt Chemistry” in Cobalt, IntechOpen, Rijeka, Croatia.
[5] Paprocka, R., Wiese-Szadkowska, M., Janciauskiene, S., Kosmalski, T., Kulik, M., and Helmin-Basa, A., 2022, Lates developments in metal complexes as anticancer agents, Coord. Chem. Rev., 452, 214307.
[6] Turecka, K., Chylewska, A., Kawiak, A., and Waleron, K.F., 2018, Antifungal activity and mechanism of action of the Co(III) coordination complexes with diamine chelate ligands against reference and clinical strains of Candida spp., Front. Microbiol., 9, 1594.
[7] Abdulkareem, E.A., and Abdulsattar, J.O., 2022, Determination of nickel and cobalt in cosmetic products marketed in Iraq using spectrophotometric and microfluidic paper-based analytical device platform, Baghdad Sci. J., 19 (6), 1286–1296.
[8] Frei, A., Verdeosa, A.D. Elliott, A.G., Zuegg, J., and Blaskovich, M.A.T., 2023, Metals to combat antimicrobial resistance, Nat. Rev. Chem., 7 (3), 202–224.
[9] Amiri Rudbari, H., Iravani, M.R., Moazam, V., Askari, B., Khorshidifard, M., Habibi, N., and Bruno, G., 2016, Synthesis, characterization, X-ray crystal structures and antibacterial activities of Schiff base ligands derived from allylamine and their vanadium(IV), cobalt(III), nickel(II), copper(II), zinc(II) and palladium(II) complexes, J. Mol. Struct., 1125, 113–120.
[10] Munadhiroh, A., Wijaya, H.W., Farida, N., Golhen, S., and Dasna, I.W., 2022, Synthesis, characterization, and preliminary study of [Co(2-aminopyridine)2(NCS)2] or bis(2-aminopyridine)dithiocyanato cobalt(II) as an antibacterial, J. Kim. Valensi, 8 (1), 23–29.
[11] Yuoh, A.C.B., Agwara, M.O., Yufanyi, D.M., Conde, M.A., Jagan, R., and Oben Eyong, K., 2015, Synthesis, crystal structure, and antimicrobial properties of a novel 1-D cobalt coordination polymer with dicyanamide and 2-aminopyridine, Int. J. Inorg. Chem., 2015 (1), 106838.
[12] Vamsikrishna, N., Kumar, M.P., Tejaswi, S., Rambabu, A., and Shivaraj, S., 2016, DNA binding, cleavage and antibacterial activity of mononuclear Cu(II), Ni(II), and Co(II) complexes derived from novel benzothiazole Schiff bases, J. Fluoresc., 26 (4), 1317–1329.
[13] Atakilt, A., Bayissa, G., Sendek, A., and Kibret, M., 2018, Cobalt(II) complexes with 1,10-phenanthroline alone and mixed with cytoside: Synthesis and antibacterial activities, Ethiop. J. Sci. Technol., 11 (2), 79–96.
[14] Jung, W.K., Koo, H.C., Kim, K.W., Shin, S., Kim, S.H., and Park, Y.H., 2008, Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli, Appl. Environ. Microbiol., 74 (7), 2171–2178.
[15] Chandraleka, S., Ramya, K., Chandramohan, G., Dhanasekaran, D., Priyadharshini, A., and Panneerselvam, A., 2014, Antimicrobial mechanism of copper(II) 1,10-phenanthroline and 2,2’-bipyridyl complex on bacterial and fungal pathogens, J. Saudi Chem. Soc., 18 (6), 953–962.
[16] Rajalakshmi, S., Fathima, A., Rao, J.R., and Nair, B.U., 2014, Antibacterial activity of copper(II) complexes against Staphylococcus aureus, RSC Adv., 4 (60), 32004–32012.
[17] Hemeg, H. A., 2017, Nanomaterials for alternative antibacterial therapy, Int. J. Nanomed., 12, 8211–8225.
[18] Pasdar, H., Hedayati Saghavaz, B., Foroughifar, N., and Davallo, M., 2017, Synthesis, characterization and antibacterial activity of novel 1,3-diethyl-1,3-bis(4-nitrophenyl)urea and its metal(II) complexes, Molecules, 22 (12), 2125.
[19] Mbani, A.L.O., Yufanyi, D.M., Tabong, C.D., Hubert, N.J., Yuoh, A.C.B., Paboudam, A.G., and Ondoh, A.M., 2022, Synthesis, crystal structure, DFT studies and Hirshfeld surface analysis of manganese(II) and cadmium(II) coordination polymers of 2-aminopyridine and dicyanamide, J. Mol. Struct., 1261, 132956.
[20] Dasna, I.W., Mariyam, D., Wijaya, H.W., Arrozi, U.S.F., and Sugiarto, S., 2023, Synthesis, structural determination and antibacterial properties of zinc(II) complexes containing 4-aminopyridine ligands, Indones. J. Chem., 23 (4), 1108–1119.
[21] Mariyam, D., Farida, N., Wijaya, H.W., and Dasna, I.W., 2022, Studi karakterisasi dan aktivitas antibakteri senyawa kompleks dari zinc(II) klorida, kalium tiosianat dan 2-aminopiridina, J. Ris. Kim., 13 (1), 100–110.
[22] Moore, M.H., Nassimbeni, L.R., and Niven, M.L., 1987, Studies in Werner Clathrates. Part 6. Structures of two novel polymeric inclusion compounds: Poly(bis(isothiocyanato)di(2-aminopyridine)nickel(II))·diethylether and di(aqua bis(isothiocyanato)3-aminopyridine μ-3-aminopyridine nickel(II))·water, Inorg. Chim. Acta, 132 (1), 61–66.
[23] Laksamana, S.D., Wijaya, H.W., and Dasna, I.W., 2023, Synthesis, characterization, and antimicrobial of [Ni(2-ampy)2(dca)2], AIP Conf. Proc., 2634 (1), 020030.
[24] Naghiyev, F.N., Khrustalev, V.N., Dobrokhotova, E.V., Akkurt, M., Khalilov, A.N., Bhattarai, A., Mamedov, İ.G., and Weil, M., 2022, Crystal structure and Hirshfeld surface analysis of 3-benzoyl-6-(1,3-dioxo-1-phenylbutan-2-yl)-2-hydroxy-2-methyl-4-phenylcyclohexane-1,1-dicarbonitrile, Acta Crystallogr., Sect. E: Crystallogr. Commun., 78 (6), 568–573.
[25] Spackman, P.R., Turner, M.J.T., McKinnon, J.J., Wolff, S.K., Grimwood, D.J., Jayatilaka, D., and Spackman, M.A., 2021, CrystalExplorer: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals, J. Appl. Crystallogr., 54 (3), 1006–1011.
[26] Svirchuk, Y.S., 2006, Electrical Conductivity, A-to-Z Guide to Thermodynamics, Heat & Mass Transfer, and Fluids Engineering, e (l), 1–13.
[27] Al-Wahaibi, L.H., Joubert, J., Blacque, O., Al-Shaalan, N.H., and El-Emam, A.A., 2019, Crystal structure, Hirshfeld surface analysis and DFT studies of 5-(adamantan-1-yl)-3-[(4-chlorobenzyl)sulfanyl]-4-methyl-4H-1,2,4-triazole, a potential 11β-HSD1 inhibitor, Sci. Rep., 9 (1), 19745.
[28] Babashkina, M.G., Panova, E.V., Alkhimova, L.E., and Safin, D.A., 2023, Salen: Insight into the crystal structure, hirshfeld surface analysis, optical properties, DFT, and molecular docking studies, Polycyclic Aromat. Compd., 43 (6), 5116–5138.
[29] Barszcz, B., Masternak, J., and Kowalik, M., 2021, Structural insights into coordination polymers based on 6s2 Pb(II) and Bi(III) centres connected via heteroaromatic carboxylate linkers and their potential applications, Coord. Chem. Rev., 443, 213935.
[30] Azouzi, K., Hamdi, B., Zouari, R., and Ben Salah, A., 2017, Synthesis, structure and Hirshfeld surface analysis, vibrational and DFT investigation of (4-pyridine carboxylic acid) tetrachlorocuprate(II) monohydrate, Bull. Mater. Sci., 40 (2), 289–299.
[31] Ben, O., Chebbi, H., and Faouzi, M., 2019, Synthesis, crystal structure, vibrational study, optical properties and Hirshfeld surface analysis of bis(2,6-diaminopyridinium) tetrachloridocobaltate(II) monohydrate, J. Mol. Struct., 1180, 72–80.
[32] Moustafa, I.M.I., Mohamed, N.M., and Ibrahim, S.M., 2022, Molecular modeling and antimicrobial screening studies on some 3-aminopyridine transition metal complexes, Open J. Inorg. Chem., 12 (3), 39–56.
[33] Raza, M.A., Kanwal, Z., Riaz, S., and Naseem, S., 2016, Antibacterial performance of chromium nanoparticles against Escherichia coli, and Pseudomonas aeruginosa, The 2016 World Congress on Advances in Civil. Environmental and Materials Research (ACEM'16), Korea, August 28-September 1, 2016.
[34] Claudel, M., Schwarte, J.V., and Fromm, K.M., 2020, New antimicrobial strategies based on metal complexes, Chemistry, 2 (4), 849–899.
[35] Kędziora, A., Wieczorek, R., Speruda, M., Matolínová, I., Goszczyński, T.M., Litwin, I., Matolín, V., and Bugla-Płoskońska, G., 2021, Comparison of antibacterial mode of action of silver ions and silver nanoformulations with different physico-chemical properties: Experimental and computational studies, Front. Microbiol., 12, 659614.
[36] Sharma, B., Shukla, S., Rattan, R., Fatima, M., Goel, M., Bhat, M., Dutta, S., Ranjan, R.K., and Sharma, M., 2022, Antimicrobial agents based on metal complexes: Present situation and future prospects, Int. J. Biomater., 2022 (1), 6819080.
[37] Kleanthous, C., and Armitage, J.P., 2015, The bacterial cell envelope, Philos. Trans. R. Soc., B, 370 (1679), 20150019.
[38] Zhuang, B., Ramanauskaite, G., Koa, Z.Y., and Wang, Z., 2021, Like dissolves like: A first-principles theory for predicting liquid miscibility and mixture dielectric constant, Sci. Adv., 7 (7), eabe7275.
[39] Mawardi, R.H., Sulistyani, N., Nurkhasanah, N., and Desyratnaputri, R., 2020, Antibacterial activity and TLC-bioautography analysis of the active fractions of Muntingia calabura L. leaves against Staphylococcus aureus, J. Pharm. Sci. Community, 17 (2), 69–75.
[40] Sugiyama, H., Sekine, A., and Uekusa, H., 2015, Crystal structure of bis(4-aminopyridine)bis(isothiocyanato) cobalt(II), X-Ray Struct. Anal. Online, 31, 27–28.
DOI: https://doi.org/10.22146/ijc.90585
Article Metrics
Abstract views : 1628 | views : 785Copyright (c) 2024 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.