Surface Properties of Graphene and Graphene Oxide Aerogels for Energy Storage Applications

https://doi.org/10.22146/ijc.89639

Rasha Shakir Mahmood(1*), Dhia Hadi Hussain(2)

(1) Department of Chemistry, College of Science, Mustansiriyah University, Baghdad 10064, Iraq
(2) Department of Chemistry, College of Science, Mustansiriyah University, Baghdad 10064, Iraq
(*) Corresponding Author

Abstract


This review is mainly on the relevance of graphene aerogels for energy storage systems highlighting their distinct properties and applications. Today, electronic devices such as smartphones, laptops, and other electrical appliances have become the axe of our daily lives. As a result, electrical energy is required for these devices. Despite the discovery of renewable energy sources as an alternative to fossil fuels, the construction of energy storage systems is still necessary to store energy. Lithium-ion batteries and supercapacitors are considered essential systems for this purpose and have witnessed tremendous development in recent years. The efficiency of these systems depends on the structure of the materials used in their formation. Graphene oxide and graphene aerogel materials improve the properties of energy storage systems in terms of stability of charging and discharging cycles, longevity, and reduction of combustion incidents resulting from ordinary compounds. However, the development of graphene aerogels faces challenges in improving their mechanical properties, the cost of their preparation, and their high agglomeration ability in solvents. Therefore, intensive efforts are needed to develop these materials for a new revolution in energy storage.

Keywords


energy storage; graphene aerogel; graphene oxide; lithium-ion batteries; supercapacitors

Full Text:

Full Text PDF


References

[1] Bassyouni, Z., Allagui, A., and Abou Ziki, J.D., 2023, Microsized electrochemical energy storage devices and their fabrication techniques for portable applications, Adv. Mater. Technol., 8 (1), 2200459.‏

[2] Agarwal, R., Singh, S., and Shalan, A.E., 2023, “Sustainable Energy Storage Devices and Device Design for Sensors and Actuators Applications” in Sustainable Energy Storage in the Scope of Circular Economy, Eds. Costa, C.M., Gonçalves, R., and Lanceros-Méndez S., John Wiley & Sons, Inc., Hoboken, NJ, US, 225–290.‏

[3] Degen, F., 2023, Lithium‐ion battery cell production in Europe: Scenarios for reducing energy consumption and greenhouse gas emissions until 2030, J. Ind. Ecol., 27 (3), 964–976.

[4] Maisel, F., Neef, C., Marscheider-Weidemann, F., and Nissen, N.F., 2023, A forecast on future raw material demand and recycling potential of lithium-ion batteries in electric vehicles, Resour., Conserv. Recycl., 192, 106920.‏

[5] Keersemaker, M., 2020, “Critical Raw Materials” in Suriname Revisited: Economic Potential of Its Mineral Resources, Springer International Publishing, Cham, Germany, 69–82.‏

[6] Ibrahim, H., Ilinca, A., and Perron, J., 2008, Energy storage systems—Characteristics and comparisons, Renewable Sustainable Energy Rev., 12 (5), 1221–1250.‏

[7] Deng, H., and Aifantis, K.E., 2023, “Applications of Lithium Batteries” in Rechargeable Ion Batteries: Materials, Design and Applications of Li‐Ion Cells and Beyond, Eds. Deng, H., Aifantis, K.E., and Hu, P., Wiley‐VCH, Weinheim, Germany, 83–103.

[8] Nazri, G.A., Pistoia, G., (Eds.), Lithium Batteries: Science and Technology, Springer, New York, US.

[9] Wang, C.Y., Liu, T., Yang, X.G., Ge, S., Stanley, N.V., Rountree, E.S., Leng, Y., and McCarthy, B.D., 2022, Fast charging of energy-dense lithium-ion batteries, Nature, 611 (7936), 485–490.

[10] Li, L., Xu, C., Chang, R., Yang, C., Jia, C., Wang, L., Song, J., and Ouyang, M., 2021, Thermal-responsive, super-strong, ultrathin firewalls for quenching thermal runaway in high-energy battery modules, Energy Storage Mater., 40, 329–336.‏

[11] Schoo, A., Moschner, R., Hülsmann, J., and Kwade, A., 2023, Coating defects of lithium-ion battery electrodes and their inline detection and tracking, Batteries, 9 (2), 111.‏

[12] Liu, Y., Feng, Q., Tang, N., Wan, X., Liu, F., Lv, L., and Du, Y., 2013, Increased magnetization of reduced graphene oxide by nitrogen-doping, Carbon, 60, 549–551.‏

[13] Lang, W., Yue, C., Dang, M., Wang, G., Chen, Y., Hu, F., Liu, Z., and Shu, J., 2023, Germanium decorated on three dimensional graphene networks as binder-free anode for Li-ion batteries, J. Power Sources, 560, 232706.‏

[14] Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., and Lau, C.N., 2008, Superior thermal conductivity of single-layer graphene, Nano Lett., 8 (3), 902–907.‏

[15] Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.B.T., and Ruoff, R.S., 2007, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45 (7), 1558–1565.‏

[16] Wu, W., Zhu, Q., Liu, Q., and Yuan, B., 2023, Study of metal–graphene aerogel for efficient solar energy interface evaporation based on one‐step thermal reduction method, Solar RRL, 7 (21), 2300527.‏

[17] Huempfner, T., Otto, F., Forker, R., Müller, P., and Fritz, T., 2023, Superconductivity of K‐intercalated epitaxial bilayer graphene, Adv. Mater. Interfaces, 10 (11), 2300014.‏

[18] Marfoua, B., and Hong, J., 2023, Graphene induced high thermoelectric performance in ZnO/graphene heterostructure, Adv. Mater. Interfaces, 10 (7), 2202387.‏

[19] Arkhipova, E.A., Ivanov, A.S., Savilov, S.V., Maslakov, K.I., Chernyak, S.A., Tambovtseva, Y.A., and Lunin, V.V., 2018, Effect of nitrogen doping of graphene nanoflakes on their efficiency in supercapacitor applications, Funct. Mater. Lett., 11 (06), 1840005.‏

[20] Khan, M., Tahir, M.N., Adil, S.F., Khan, H.U., Siddiqui, M.R.H., Al-Warthan, A.A., and Tremel, W., 2015, Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications, J. Mater. Chem. A, 3 (37), 18753–18808.‏

[21] Sethurajaperumal, A., Ravichandran, V., Merenkov, I., Ostrikov, K.K., and Varrla, E., 2023, Delamination and defects in graphene nanosheets exfoliated from 3D precursors, Carbon, 213, 118306.‏

[22] Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D.E., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A., 2004, Electric field effect in atomically thin carbon films, Science, 306 (5696), 666–669.‏

[23] Plata-Gryl, M., Castro-Muñoz, R., and Boczkaj, G., 2023, Chemically reduced graphene oxide based aerogels-Insight on the surface and textural functionalities dependent on handling the synthesis factors, Colloids Surf., A, 675, 132005.‏

[24] Firdaus, R.M., De Melo, C., Migot, S., Emo, M., Pierson, J.F., Mohamed, A.R., and Vigolo, B., 2023, 3D porous alumina/graphene hybrids prepared by atomic layer deposition and their performance for water treatment, FlatChem, 41, 100545.‏

[25] Zhang, K., Guo, F., Graham, N., and Yu, W., 2023, Engineering of 3D graphene hydrogel-supported MnO2–FeOOH nanoparticles with synergistic effect of oxidation and adsorption toward highly efficient removal of arsenic, Environ. Pollut., 317, 120735.‏

[26] An, R., Zhang, B., Han, L., Wang, X., Zhang, Y., Shi, L., and Ran, R., 2019, Strain-sensitivity conductive MWCNTs composite hydrogel for wearable device and near-infrared photosensor, J. Mater. Sci., 54 (11), 8515–8530.‏

[27] Chang, H., Li, C., Huang, R., Su, R., Qi, W., and He, Z., 2019, Amphiphilic hydrogels for biomedical applications, J. Mater. Chem. B, 7 (18), 2899–2910.‏

[28] Deng, Y., Wu, Y., Wang, L., Zhang, K., Wang, Y., and Yan, L., 2023, Polysaccharide hydrogel electrolytes with robust interfacial contact to electrodes for quasi-solid state flexible aqueous zinc ion batteries with efficient suppressing of dendrite growth, J. Colloid Interface Sci., 633, 142–154.‏

[29] Li, S., Zhou, X., Dong, Y., and Li, J., 2020, Flexible self‐repairing materials for wearable sensing applications: Elastomers and hydrogels, Macromol. Rapid Commun., 41 (23), 2000444.‏

[30] Guo, J., Fu, S., Deng, Y., Xu, X., Laima, S., Liu, D., Zhang, P., Zhou, J., Zhao, H., Yu, H., Dang, S., Zhang, J., Zhao, Y., Li, H., and Duan, X., 2022, Hypocrystalline ceramic aerogels for thermal insulation at extreme conditions, Nature, 606 (7916), 909–916.

[31] Castaldo, R., Avolio, R., Cocca, M., Errico, M.E., Lavorgna, M., Šalplachta, J., Santillo, C., and Gentile, G., 2022, Hierarchically porous hydrogels and aerogels based on reduced graphene oxide, montmorillonite and hyper-crosslinked resins for water and air remediation, Chem. Eng. J., 430, 133162.‏

[32] Zhang, Y.G., Zhu, Y.J., Xiong, Z.C., Wu, J., and Chen, F., 2018, Bioinspired ultralight inorganic aerogel for highly efficient air filtration and oil–water separation, ACS Appl. Mater. Interfaces, 10 (15), 13019–13027.‏

[33] Moud, A.A., 2022, Advanced cellulose nanocrystals (CNC) and cellulose nanofibrils (CNF) aerogels: Bottom-up assembly perspective for production of adsorbents, Int. J. Biol. Macromol., 222, 1–29.

[34] Lee, J.H., Lee, S.Y., and Park, S.J., 2023, Highly porous carbon aerogels for high-performance supercapacitor electrodes, Nanomaterials, 13 (5), 817.‏

[35] Ratke, L., and Gurikov, P., 2021, The Chemistry and Physics of Aerogels: Synthesis, Processing, and Properties, Cambridge University Press, Cambridge, UK.‏

[36] Lebedev, A., Suslova, E., Troyankin, A., and Lovskaya, D., 2021, Investigation of aerogel production processes: Solvent exchange under high pressure combined with supercritical drying in one apparatus, Gels, 7 (1), 4.‏

[37] Ren, R.P., Wang, Z., Ren, J., and Lv, Y.K., 2019, Highly compressible polyimide/graphene aerogel for efficient oil/water separation, J. Mater. Sci., 54 (7), 5918–5926.‏

[38] Cantero, D., Pinilla-Peñalver, E., Romero, A., and Sánchez-Silva, L., 2023, Synthesis of waterborne polyurethane aerogels-like materials via freeze-drying: An innovative approach, J. Mater. Sci., 58 (21), 9087–9102.

[39] Chen, Y., Zhang, L., Yang, Y., Pang, B., Xu, W., Duan, G., Jiang, S., and Zhang, K., 2021, Recent progress on nanocellulose aerogels: Preparation, modification, composite fabrication, applications, Adv. Mater., 33 (11), 2005569.‏

[40] Koçyigit, N., 2023, “Aerogels: Characteristics, Classification, Structure, Properties, Preparation, Types and Applications” in Important Research in the Field of Chemistry in a Globalizing World, IKSAD International Publishing House, Turkey, 3–42.

[41] Sharma, J., Sheikh, J., and Behera, B.K., 2023, Aerogel composites and blankets with embedded fibrous material by ambient drying: Reviewing their production, characteristics, and potential applications, Drying Technol., 41 (6), 915–947.‏

[42] Zhu, Y., Li, H., Peng, C., Ma, J., Huang, S., Wang, R., Wu, B., Xiong, Q., Peng, D., Huang, S., and Chen, J., 2023, Application of protein/polysaccharide aerogels in drug delivery system: A review, Int. J. Biol. Macromol., 247, 125727.

[43] Jin, R., Zhou, Z., Liu, J., Shi, B., Zhou, N., Wang, X., Jia, X., Guo, D., and Xu, B., 2023, Aerogels for thermal protection and their application in aerospace, Gels, 9 (8), 606.‏

[44] Kreek, K., Kriis, K., Maaten, B., Uibu, M., Mere, A., Kanger, T., and Koel, M., 2014, Organic and carbon aerogels containing rare-earth metals: Their properties and application as catalysts, J. Non-Cryst. Solids, 404, 43–48.‏

[45] Donato, K.Z., Tan, H.L., Marangoni, V.S., Martins, M.V.S., Ng, P.R., Costa, M.C.F., Jain, P., Lee, S.J., Koon, G.K.W., Donato, R.K., and Castro Neto, A.H., 2023, Graphene oxide classification and standardization, Sci. Rep., 13 (1), 6064.‏‏

[46] Patil, S., Rajkuberan, C., and Sagadevan, S., 2023, Recent biomedical advancements in graphene oxide and future perspectives, J. Drug Delivery Sci. Technol., 86, 104737.‏

[47] Jiříčková, A., Jankovský, O., Sofer, Z., and Sedmidubský, D., 2022, Synthesis and applications of graphene oxide, Materials, 15 (3), 920.‏

[48] Ren, Z., Li, H., Li, J., Cai, J., Zhong, L., Ma, Y., and Pang, Y., 2023, Green synthesis of reduced graphene oxide/chitosan/gold nanoparticles composites and their catalytic activity for reduction of 4-nitrophenol, Int. J. Biol. Macromol., 229, 732–745.‏

[49] de Barros, N.G., Gonzaga Neto, A.C., Vaccioli, K.B., Angulo, H.R.V., de Andrade e Silva, L.G., Toffoli, S.M., and Valera, T.S., 2023, Graphene oxide: A comparison of reduction methods, C, 9 (3), 73.‏

[50] Wan, Q., Wang, H., Li, S., and Wang, J., 2018, Efficient liquid-phase exfoliation of few-layer graphene in aqueous 1,1,3,3-tetramethylurea solution, J. Colloid Interface Sci., 526, 167–173.‏

[51] Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., and Geim, A.K., 2008, Fine structure constant defines visual transparency of graphene, Science, 320 (5881), 1308–1308.

[52] Qi, P., Zhu, H., Borodich, F., and Peng, Q., 2023, A review of the mechanical properties of graphene aerogel materials: Experimental measurements and computer simulations, Materials, 16 (5), 1800.‏

[53] Cao, L., Wang, C., and Huang, Y., 2023, Structure optimization of graphene aerogel-based composites and applications in batteries and supercapacitors, Chem. Eng. J., 454, 140094.‏

[54] Zhao, Z., Li, P., Li, Y., and Wang, S., 2023, Durable thermal fluid super-repellency of elastic fluorine-modified SiO2@sponge composite aerogel, Chem. Eng. J., 454, 140247.‏

[55] Korkmaz, S., and Kariper, İ.A., 2020, Graphene and graphene oxide based aerogels: Synthesis, characteristics and supercapacitor applications, J. Energy Storage, 27, 101038.‏

[56] Raagulan, K., Kim, B.M., and Chai, K.Y., 2020, Recent advancement of electromagnetic interference (EMI) shielding of two dimensional (2D) MXene and graphene aerogel composites, Nanomaterials, 10 (4), 702.‏

[57] Tang, Q., and Wang, T., 2005, Preparation of silica aerogel from rice hull ash by supercritical carbon dioxide drying, J. Supercrit. Fluids, 35 (1), 91–94.‏

[58] Thakur, A, 2022, Graphene aerogel based energy storage materials–A review, Mater. Today: Proc., 65, 3369–3376.

[59] Mao, S., Lu, G., and Chen, J., 2015, Three-dimensional graphene-based composites for energy applications, Nanoscale, 7 (16), 6924–6943.‏

[60] Cong, H.P., Ren, X.C., Wang, P., and Yu, S.H., 2012, Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process, ACS Nano, 6 (3), 2693–2703.‏

[61] Ahmed, M.A., Ahmed, M.A., and Mohamed, A.A., 2023, Adsorptive removal of tetracycline antibiotic onto magnetic graphene oxide nanocomposite modified with polyvinylpyrroilidone, React. Funct. Polym., 191, 105701.‏

[62] Rathi, K., and Kim, D., 2023, Super-compressible and mechanically stable reduced graphene oxide aerogel for wearable functional devices, Sci. Technol. Adv. Mater., 24 (1), 2214854.‏

[63] Jiang, Y., Chowdhury, S., and Balasubramanian, R., 2020, Efficient removal of bisphenol A and disinfection of waterborne pathogens by boron/nitrogen codoped graphene aerogels via the synergy of adsorption and photocatalysis under visible light, J. Environ. Chem. Eng., 8 (5), 104300.‏

[64] García-Bordejé, E., Víctor-Román, S., Sanahuja-Parejo, O., Benito, A.M., and Maser, W.K., 2018, Control of the microstructure and surface chemistry of graphene aerogels via pH and time manipulation by a hydrothermal method, Nanoscale, 10 (7), 3526–3539.

[65] Luo, C., Lv, W., Qi, C., Zhong, L., Pan, Z.Z., Li, J., Kang, F., and Yang, Q.H., 2019, Realizing ultralow concentration gelation of graphene oxide with artificial interfaces, Adv. Mater., 31 (8), 1805075.

[66] Xu, Y., Sheng, K., Li, C., and Shi, G., 2010, Self-assembled graphene hydrogel via a one-step hydrothermal process, ACS Nano, 4 (7), 4324–4330.‏

[67] Rosillo-Lopez, M., and Salzmann, C.G., 2016, A simple and mild chemical oxidation route to high-purity nano-graphene oxide, Carbon, 106, 56–63.‏

[68] Xiao, W., Li, B., Yan, J., Wang, L., Huang, X., and Gao, J., 2023, Three dimensional graphene composites: preparation, morphology and their multi-functional applications, Composites, Part A, 165, 107335.‏

[69] Ma, X., Li, Y., Wang, W., Ji, Q., and Xia, Y., 2013, Temperature-sensitive poly (N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels by in situ polymerization with improved swelling capability and mechanical behavior, Eur. Polym. J., 49 (2), 389–396.

[70] Bai, H., Li, C., Wang, X., and Shi, G., 2011, On the gelation of graphene oxide, J. Phys. Chem. C, 115 (13), 5545–5551.

[71] Chen, Z., Ren, W., Gao, L., Liu, B., Pei, S., and Cheng, H.M., 2011, Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition, Nat. Mater., 10 (6), 424–428.‏

[72] Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J.H., Kim, P., Choi, J.Y., and Hong, B.H., 2009, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature, 457 (7230), 706–710.

[73] Ion-Ebrasu, D., Andrei, R.D., Enache, A., Enache, S., Soare, A., Carcadea, E., and Varlam, M., 2020, 3-D Graphene growth by chemical vapor deposition (CVD) for energy applications, Smart Energy Sustainable Environ., 23 (1), 13–20.‏

[74] Banciu, C.A., Patroi, D., Lungulescu, E.M., Sbarcea, B.G., and Marinescu, V.E., 2021, Freestanding graphene networks, J. Optoelectron. Adv. Mater., 23 (3-4), 173–182.‏

[75] Srinivasan, B.M., Hao, Y., Hariharaputran, R., Rywkin, S., Hone, J.C., Colombo, L., Ruoff, R.S., and Zhang, Y.W., 2018, Oxygen‐promoted chemical vapor deposition of graphene on copper: A combined modeling and experimental study, ACS Nano, 12 (9), 9372–9380.

[76] Feinle, A., Elsaesser, M.S., and Hüsing, N., 2016, Sol–gel synthesis of monolithic materials with hierarchical porosity, Chem. Soc. Rev., 45 (12), 3377–3399.‏

[77] Alabada, R., Kadhim, M.M., Sabri Abbas, Z., Rheima, A.M., Altimari, U.S., Dawood, A.H., Jawad Al-Bayati, A.D., Talib Abed, Z., Saeed Radhi, R., Salam Jaber, A., Hachim, S.K., Ali, F.K., Mahmoud, Z.H., and Kianfar, E., 2023, Investigation of effective parameters in the production of alumina gel through the sol-gel method, Case Stud. Chem. Environ. Eng., 8, 100405.‏

[78] Whitby, C.P., Krebsz, M., and Booty, S.J., 2018, Understanding the role of hydrogen bonding in the aggregation of fumed silica particles in triglyceride solvents, J. Colloid Interface Sci., 527, 1–9.

[79] Liao, Y., Xu, Y., and Chan, Y., 2013, Semiconductor nanocrystals in sol–gel derived matrices, Phys. Chem. Chem. Phys., 15 (33), 13694–13704.‏

[80] Ogoshi, T., Takashima, Y., Yamaguchi, H., and Harada, A., 2007, Chemically-responsive sol−gel transition of supramolecular single-walled carbon nanotubes (SWNTs) hydrogel made by hybrids of SWNTs and cyclodextrins, J. Am. Chem. Soc., 129 (16), 4878-4879.‏

[81] Worsley, M.A., Pauzauskie, P.J., Olson, T.Y., Biener, J., Satcher, J.H., and Baumann, T.F., 2010, Synthesis of graphene aerogel with high electrical conductivity, J. Am. Chem. Soc., 132 (40), 14067–14069.‏

[82] Huang, P., Zhu, R., Li, C., Wang, X., Wang, X., and Zhang, X., 2020, Effect of graphene concentration on tribological properties of graphene aerogel/TiO2 composite through controllable cellular-structure, Mater. Des., 188, 108468.‏

[83] Yang, C., Zhu, X., Wang, X., Wang, J., and Huang, H., 2019, Phase-field model of graphene aerogel formation by ice template method, Appl. Phys. Lett., 115 (11), 111901.‏

[84] Weng, B., Ding, A., Liu, Y., Diao, J., Razal, J., Lau, K.T., Shepherd, R., Li, C., and Chen, J., 2016, Hierarchical Nafion enhanced carbon aerogels for sensing applications, Nanoscale, 8 (6), 3416–3424.‏

[85] Chen, W., Huang, Y.X., Li, D.B., Yu, H.Q., and Yan, L., 2014, Preparation of a macroporous flexible three dimensional graphene sponge using an ice-template as the anode material for microbial fuel cells, RSC Adv., 4 (41), 21619–21624.‏

[86] Wang, Z., Shen, X., Han, N.M., Liu, X., Wu, Y., Ye, W., and Kim, J.K., 2016, Ultralow electrical percolation in graphene aerogel/epoxy composites, Chem. Mater., 28 (18), 6731–6741.‏

[87] Meng, F., Wang, H., Wei, W., Chen, Z., Li, T., Li, C., Xuan, Y., and Zhou, Z., 2018, Generation of graphene-based aerogel microspheres for broadband and tunable high-performance microwave absorption by electrospinning-freeze drying process, Nano Res., 11, 2847–2861.‏

[88] Geng, Y., Li, Z., Chen, M., Zhao, H., and Zhang, L., 2020, The preparation of graphene foam by one-step reduction and air-drying for oil–water separation, J. Sol-Gel Sci. Technol., 94 (2), 375–383.‏

[89] Kelly, B.E., Bhattacharya, I., Heidari, H., Shusteff, M., Spadaccini, C.M., and Taylor, H.K., 2019, Volumetric additive manufacturing via tomographic reconstruction, Science, 363 (6431), 1075–1079.‏

[90] Yu, C., Schimelman, J., Wang, P., Miller, K.L., Ma, X., You, S., Guan, J., Sun, B., Zhu, W., and Chen, S., 2020, Photopolymerizable biomaterials and light-based 3D printing strategies for biomedical applications, Chem. Rev., 120 (19), 10695–10743.‏

[91] Tran, T.S., Dutta, N.K., and Choudhury, N.R., 2020, Poly(ionic liquid)-stabilized graphene nanoinks for scalable 3D printing of graphene aerogels, ACS Appl. Nano Mater., 3 (11), 11608–11619.

[92] Tan, K.H., Chua, C.K., Leong, K.F., Cheah, C.M., Gui, W.S., Tan, W.S., and Wiria, F.E., 2005, Selective laser sintering of biocompatible polymers for applications in tissue engineering, Bio-Med. Mater. Eng., 15 (1-2), 113–124.‏

[93] Moyseowicz, A., Minta, D., and Gryglewicz, G., 2023, Conductive polymer/graphene‐based composites for next generation energy storage and sensing applications, ChemElectroChem, 10 (9), e202201145.

[94] Liu, X., Zou, S., Liu, K., Lv, C., Wu, Z., Yin, Y., Liang, T., and Xie, Z., 2018, Highly compressible three-dimensional graphene hydrogel for foldable all-solid-state supercapacitor, J. Power Sources, 384, 214–222.

[95] Hoviatdoost, A., Naderi, M., Ghazitabar, A., and Gholami, F., 2023, Fabrication of high-performance ultralight and reusable graphene aerogel/cellulose fibers nanocomposite to remove organic pollutants, Mater. Today Commun., 34, 105077.

[96] Jiang, L., and Fan, Z., 2014, Design of advanced porous graphene materials: From graphene nanomesh to 3D architectures, Nanoscale, 6 (4), 1922–1945.‏

[97] Garcia-Bordejé, E., Benito, A.M., and Maser, W.K., 2021, Graphene aerogels via hydrothermal gelation of graphene oxide colloids: Fine-tuning of its porous and chemical properties and catalytic applications, Adv. Colloid Interface Sci., 292, 102420.‏

[98] Uchida, I., Ishikawa, H., Mohamedi, M., and Umeda, M., 2003, AC-impedance measurements during thermal runaway process in several lithium/polymer batteries, J. Power Sources, 119-121, 821–825.‏

[99] Metzger, P., Mendonça, S., Silva, J.A., and Damásio, B., 2023, Battery innovation and the circular economy: What are patents revealing?, Renewable Energy, 209, 516–532.‏

[100] Yoo, E.J., Kim, J., Hosono, E., Zhou, H., Kudo, T., and Honma, I., 2008, Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries, Nano Lett., 8 (8), 2277–2282.‏

[101] Hou, J., Shao, Y., Ellis, M.W., Moore, R.B., and Yi, B., 2011, Graphene-based electrochemical energy conversion and storage: Fuel cells, supercapacitors and lithium ion batteries, Phys. Chem. Chem. Phys., 13 (34), 15384–15402.‏

[102] Nguyen, D.C., Tran, D.T., Doan, T.L.L., Kim, D.H., Kim, N.H., and Lee, J.H., 2020, Rational design of core@ shell structured CoSx@Cu2MoS4 hybridized MoS2/N,S‐codoped graphene as advanced electrocatalyst for water splitting and Zn‐air battery, Adv. Energy Mater., 10 (8), 1903289.‏

[103] Shao, G., Hanaor, D.A., Wang, J., Kober, D., Li, S., Wang, X., Shen, X., Bekheet, M.F., and Gurlo, A., 2020, Polymer-derived SiOC integrated with a graphene aerogel as a highly stable Li-ion battery anode, ACS Appl. Mater. Interfaces, 12 (41), 46045–46056.‏

[104] Chen, H., Liu, R., Wu, Y., Cao, J., Chen, J., Hou, Y., Guo, Y., Khatoon, R., Chen, L., Zhang, Q., He, Q., and Lu, J., 2021, Interface coupling 2D/2D SnSe2/graphene heterostructure as long-cycle anode for all-climate lithium-ion battery, Chem. Eng. J., 407, 126973.‏

[105] Wang, Y., Deng, Z., Huang, J., Li, H., Li, Z., Peng, X., Tian, Y., Lu, J., Tang, H., Chen, L., and Ye, Z., 2021, 2D Zr-Fc metal-organic frameworks with highly efficient anchoring and catalytic conversion ability towards polysulfides for advanced Li-S battery, Energy Storage Mater., 36, 466–477.‏

[106] Bhaskar, A., Deepa, M., Rao, T.N., and Varadaraju, U.V., 2012, Enhanced nanoscale conduction capability of a MoO2/graphene composite for high performance anodes in lithium ion batteries, J. Power Sources, 216, 169–178.‏

[107] Zeng, H., Xing, B., Chen, L., Yi, G., Huang, G., Yuan, R., Zhang, C., Cao, Y., and Chen, Z., 2019, Nitrogen-doped porous Co3O4/graphene nanocomposite for advanced lithium-ion batteries, Nanomaterials, 9 (9), 1253.‏

[108] Tang, F., Jiang, T., Tan, Y., Xu, X. and Zhou, Y., 2021, Preparation and electrochemical performance of silicon@graphene aerogel composites for lithium-ion batteries, J. Alloys Compd., 854, 157135.

[109] Shen, H., Xia, X., Yan, S., Jiao, X., Sun, D., Lei, W., and Hao, Q., 2021, SnO2/NiFe2O4/graphene nanocomposites as anode materials for lithium ion batteries, J. Alloys Compd., 853, 157017.‏

[110] Chen, J., Hu, X., Gao, H., Yan, S., Chen, S., and Liu, X., 2022, Graphene-wrapped MnCO3/Mn3O4 nanocomposite as an advanced anode material for lithium-ion batteries: Synergistic effect and electrochemical performances, J. Mater. Sci. Technol., 99, 9–17.

[111] Liu, J., Zheng, Q., Goodman, M.D., Zhu, H., Kim, J., Krueger, N.A., Ning, H., Huang, X., Liu, J., Terrones, M., and Braun, P.V., 2016, Graphene sandwiched mesostructured Li‐ion battery electrodes, Adv. Mater., 28 (35), 7696–7702.‏

[112] YongJian, W.U., RenHeng, T., WenChao, L.I., Ying, W., Ling, H., and LiuZhang, O., 2020, A high-quality aqueous graphene conductive slurry applied in anode of lithium-ion batteries, J. Alloys Compd., 830, 154575.‏

[113] Deng, Z., Wang, J., Wu, A., Shen, J., and Zhou, B., 1998, High strength SiO2 aerogel insulation, J. Non-Cryst. Solids, 225, 101–104.‏

[114] Borella, L., Rozo, A., Perfetti, C., and Iorio, C.S., 2023, characterization of composite freeze-dried aerogels with simulant lunar regolith for space applications, Materials, 16 (17), 5797.‏

[115] Afroze, J.D., Tong, L., Abden, M.J., and Chen, Y., 2023, Multifunctional hierarchical graphene-carbon fiber hybrid aerogels for strain sensing and energy storage, Adv. Compos. Hybrid Mater., 6 (1), 18.‏

[116] Sabri Abbas, Z., Kadhim, M.M., Mahdi Rheima, A., Jawad Al-Bayati, A.D., Talib Abed, Z., Dashoor Al-Jaafari, F.M., Salam Jaber, A., Hachim, S.K., Mahmoud, Z.H., Ali, F.K., Koten, H., and Kianfar, E., 2023, Preparing hybrid nanocomposites on the basis of Resole/graphene/carbon fibers for investigating mechanical and thermal properties, BioNanoScience, 13 (3), 983–1011.‏

[117] Liu, F., Song, S., Xue, D., and Zhang, H., 2012. Folded structured graphene paper for high performance electrode materials, Adv. Mater., 24 (8), 1089–1094.‏

[118] Campbell, E., Hasan, M.T., Pho, C., Callaghan, K., Akkaraju, G.R., and Naumov, A.V., 2019, Graphene oxide as a multifunctional platform for intracellular delivery, imaging, and cancer sensing, Sci. Rep., 9 (1), 416.

[119] Kadhim, M.M., Rheima, A.M., Abbas, Z.S., Jlood, H.H., Hachim, S.K., and Kadhum, W.R., 2023, Evaluation of a biosensor-based graphene oxide-DNA nanohybrid for lung cancer, RSC Adv., 13 (4), 2487–2500.‏

[120] Hsu, C.Y., Rheima, A.M., Mohammed, M.S., Kadhim, M.M., Mohammed, S.H., Abbas, F.H., Abed, Z.T., Mahdi, Z.M., Abbas, Z.S., Hachim, S.K., Ali, F.K., Mahmoud, Z.H., and Kianfar, E., 2023, Application of carbon nanotubes and graphene-based nanoadsorbents in water treatment, BioNanoScience, 13 (4), 1418–1436.‏



DOI: https://doi.org/10.22146/ijc.89639

Article Metrics

Abstract views : 2675 | views : 1048


Copyright (c) 2024 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.