Antibacterial Activity and CO2 Capture by Cerium-Copper Mixed Oxides Prepared Using a Co-precipitation Method

Sirilak Kamonwannasit(1), Cybelle Morales Futalan(2), Pongtanawat Khemthong(3), Saran Youngjan(4), Piaw Phatai(5*)

(1) Department of Agro-Industrial Product Development, Faculty of Agricultural Technology, Burapha University, Sakaeo 27160, Thailand
(2) Institute of Civil Engineering, University of the Philippines, Diliman Quezon City 1101, Philippines
(3) National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
(4) National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
(5) Department of Chemistry, Faculty of Science, Udon Thani Rajabhat University, Udon Thani 41000, Thailand
(*) Corresponding Author


Indoor air pollution is comprised of fine particles, bacteria, fungi, and hydrocarbons. Acceptable indoor air quality is maintained using several layers of air filters. Alternative materials with the capacity to remove CO2 from indoor air with antibacterial efficacy need to be further investigated. Mixed oxides of Ce1.0-xCuxO (x = 0.0, 0.1, 0.5, 0.9, 1.0) were synthesized using a co-precipitation method. Characterization studies revealed that single oxides of Ce1.0O and Cu1.0O were of cubic fluorite and monoclinic crystal structures, respectively. Results also show that Ce0.1Cu0.9O and Ce0.5Cu0.5O were composites. All samples were classified as mesoporous materials with a type IV isotherm, and the main functional group was identified as Ce–O–Cu. The surface area of Ce0.5Cu0.5O was 17.63 m2/g. The highest CO2 adsorption capacity was 5.72 cm3/g for Ce0.5Cu0.5O. Moreover, the greatest antibacterial activity against B. subtilis (12.22 mm inhibition zone) and P. aeruginosa (7.34 mm inhibition zone) was observed for Ce0.5Cu0.5O at a 30 mg/L concentration. The synthesis of mixed Ce1.0-xCuxO oxides along with their satisfactory antibacterial performance and CO2 adsorption capacity, indicate its potential use as an alternative material for inclusion in indoor air filters.


mixed oxide; cerium; copper; co-precipitation; CO2 capture

Full Text:

Full Text PDF


[1] Salim, S.Y., Kaplan, G.G., and Madsen, K.L., 2014, Air pollution effects on the gut microbiota, Gut Microbes, 5 (2), 215–219.

[2] López, L.R., Dessì, P., Cabrera-Codony, A., Rocha-Melogno, L., Kraakman, N.J.R., Balaguer, M.D., and Puig, S., 2024, Indoor CO2 direct air capture and utilization: Key strategies towards carbon neutrality, Cleaner Eng. Technol., 20, 100746.

[3] Klepeis, N.E., Nelson, W.C., Ott, W.R., Robinson, J.P., Tsang, A.M., Switzer, P., Behar, J.V., Hern, S.C., and Engelmann, W.H., 2001, The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants, J. Exposure Sci. Environ. Epidemiol., 11 (3), 231–252.

[4] Jankowska, E., Reponen, T., Willeke, K., Grinshpun, S.A., and Choi, K.J., 2000, Collection of fungal spores on air filters and spore reentrainment from filters into air, J. Aerosol Sci., 31 (8), 969–978.

[5] Halpern, P., Raskin, Y., Sorkine, P., and Oganezov, A., 2004, Exposure to extremely high concentrations of carbon dioxide: A clinical description of a mass casualty incident, Ann. Emerg. Med., 43 (2), 196–199.

[6] López, L.R., Dessì, P., Cabrera-Codony, A., Rocha-Melogno, L., Kraakman, B., Naddeo, V., Balaguer, M.D., and Puig, S., 2022, CO2 in indoor environments: From environmental and health risk to potential renewable carbon source, Sci. Total Environ., 856, 159088.

[7] Abdul-Wahab, S.A., Chin Fah En, S., Elkamel, A., Ahmadi, L., and Yetilmezsoy, K., 2015, A review of standards and guidelines set by international bodies for the parameters of indoor air quality, Atmos. Pollut. Res., 6 (5), 751–767.

[8] Souzandeh, H., Wang, Y., Netravali, A.N., and Zhong, W.H., 2019, Towards sustainable and multifunctional air-filters: A review on biopolymer-based filtration materials, Polym. Rev., 59 (4), 651–686.

[9] Feng, S., Li, D., Low, Z., Liu, Z., Zhong, Z., Hu, Y., Wang, Y., and Xing, W., 2017, ALD-seeded hydrothermally-grown Ag/ZnO nanorod PTFE membrane as efficient indoor air filter, J. Membr. Sci., 531, 86–93.

[10] Vaterrodt, A., Thallinger, B., Daumann, K., Koch, D., Guebitz, G.M., and Ulbricht, M., 2016, Antifouling and antibacterial multifunctional polyzwitterion/enzyme coating on silicone catheter material prepared by electrostatic layer-by-layer assembly, Langmuir., 32 (5), 1347–1359.

[11] Krishnamurthy, A., Salunkhe, B., Zore, A., Rownaghi, A., Schuman, T., and Rezaei, F., 2019, Amine-based latex coatings for indoor air CO2 control in commercial buildings, ACS Appl. Mater. Interfaces, 11 (18), 16594–16604.

[12] Wicaksono, M.R., Handayani, I.P., Andiani, L., Chandra, I., Muminati, S.A., Kusuma Wardhani, N.P.E., and Verasta, T., 2024, Molecular sieve 13X activated zeolite for CO2 filter in air purifier, Mater. Today: Proc., In Press, Corrected Proof.

[13] Maleki, P., Nemati, F., Gholoobi, A., Hashemzadeh, A., Sabouri, Z., and Darroudi, M., 2021, Green facile synthesis of silver-doped cerium oxide nanoparticles and investigation of their cytotoxicity and antibacterial activity, Inorg. Chem. Commun., 131, 108762.

[14] Zhang, H., Qiu, J., Yan, B., Liu, L., Chen, D., and Liu, X., 2021, Regulation of Ce(III)/Ce(IV) ratio of cerium oxide for antibacterial application, iScience, 24 (3), 102226.

[15] Cui, Z., Zhang, L., Xue, Y., Feng, Y., Wang, M., Chen, J., Ji, B., Wang, C., and Xue, Y., 2022, Effects of shape and particle size on the photocatalytic kinetics and mechanism of nano-CeO2, Int. J. Miner., Metall. Mater., 29 (12), 2221–2231.

[16] Li, G., Wen, P., Gao, C., Zhang, T., Hu, J., Zhang, Y., Guan, S., Li, Q., and Li, B., 2021, Effects of CeO2 pre-calcined at different temperatures on the performance of Pt/CeO2–C electrocatalyst for methanol oxidation reaction, Int. J. Miner., Metall. Mater., 28 (7), 1224–1232.

[17] Slostowski, C., Marre, S., Dagault, P., Babot, O., Toupance, T., and Aymonier, C., 2017, CeO2 nanopowders as solid sorbents for efficient CO2 capture/release processes, J. CO2 Util., 20, 52–58.

[18] Tinh, V.D.C., Thuc, V.D., and Kim, D., 2021, Chemically sustainable fuel cells via layer-by-layer fabrication of sulfonated poly(arylene ether sulfone) membranes containing cerium oxide nanoparticles, J. Membr. Sci., 634, 119430.

[19] Li, M., Tumuluri, U., Wu, Z., and Dai, S., 2015, Effect of dopants on the adsorption of carbon dioxide on ceria surfaces, ChemSusChem, 8 (21), 3651–3660.

[20] Yoshikawa, K., Sato, H., Kaneeda, M., and Kondo, J.N., 2014, Synthesis and analysis of CO2 adsorbents based on cerium oxide, J. CO2 Util., 8, 34–38.

[21] Cao, F., Zhang, Y., Sun, Y., Wang, Z., Zhang, L., Huang, Y., Liu, C., Liu, Z., Ren, J., and Qu, X., 2018, Ultrasmall nanozymes isolated within porous carbonaceous frameworks for synergistic cancer therapy: Enhanced oxidative damage and reduced energy supply, Chem. Mater., 30 (21), 7831–7839.

[22] El-Trass, A., ElShamy, H., El-Mehasseb, I., and El-Kemary, M., 2012, CuO nanoparticles: Synthesis, characterization, optical properties and interaction with amino acids, Appl. Surf. Sci., 258 (7), 2997–3001.

[23] Dosa, M., Marin-Figueredo, M.J., Sartoretti, E., Novara, C., Giorgis, F., Bensaid, S., Fino, D., Russo, N., and Piumetti, M., 2022, Cerium-copper oxides synthesized in a multi-inlet vortex reactor as effective nanocatalysts for CO and ethene oxidation reactions, Catalysts, 12 (4), 364.

[24] Pakharukova, V.P., Moroz, E.M., Kriventsov, V.V., Zyuzin, D.A., Kosmambetova, G.R., and Strizhak, P.E., 2009, Copper–cerium oxide catalysts supported on monoclinic zirconia: Structural features and catalytic behavior in preferential oxidation of carbon monoxide in hydrogen excess, Appl. Catal., A, 365 (2), 159–164.

[25] Papavasiliou, J., 2019, Interaction of atomically dispersed gold with hydrothermally prepared copper-cerium oxide for preferential CO oxidation reaction, Catal. Today, 357, 684–693.

[26] Vigneselvan, S., Manikandan, V., Petrila, I., Vanitha, A., and Chandrasekaran, J., 2020, Effect of copper substitution on structural, optical and humidity-sensing characteristics of cerium oxide nanoparticles, J. Phys. Chem. Solids, 136, 109173.

[27] Phatai, P., Futalan, C.M., Utara, S., Khemthong, P., and Kamonwannasit, S., 2018, Structural characterization of cerium-doped hydroxyapatite nanoparticles synthesized by an ultrasonic-assisted sol-gel technique, Results Phys., 10, 956–963.

[28] Zeng, S., Zhang, L., Jiang, N., Gao, M., Zhao, X., Yin, Y., and Su, H., 2015. Multi-wall carbon nanotubes as support of copper-cerium composite for preferentially oxidation of carbon monoxide, J. Power Sources, 293, 1016–1023.

[29] Arango-Díaz, A., Cecilia, J.A., dos Santos-Gómez, L., Marrero-López, D., Losilla, E.R., Jiménez-Jiménez, J, and Rodríguez-Castellón, E., 2015. Characterization and performance in preferential oxidation of CO of CuO-CeO2 catalysts synthesized using polymethyl metacrylate (PMMA) as template, Int. J. Hydrogen Energy, 40 (34), 11254–11260.

[30] Zeng, S., Wang, Y., Ding, S., Sattler, J.J.H.B., Borodina, E., Zhang, L., Weckhuysen, B.M., and Su, H., 2014, Active sites over CuO/CeO2 catalysts for preferential CO oxidation, J. Power Sources, 256, 301–311.

[31] Gu, D., Jia, C.J., Bongard, H., Spliethoff, B., Weidenthaler, C., Schmidt, W., and Schüth, F., 2014, Ordered mesoporous Cu-Ce-O catalysts for preferential CO oxidation in H2-rich gases: Influence of copper content and pretreatment conditions, Appl. Catal., B, 152-153, 11–18.

[32] Aseena, S., Abraham, N., and Suresh Babu, V., 2023, Morphological and optical studies of zinc doped cerium oxide nanoparticles prepared by single step co-precipitation method, Mater. Today: Proc., 80, 1901–1905.

[33] Yudharma, G., Kurniawan, B., Rahman, I.K., and Razaq, D.S., 2019, Effect of Copper substitution on the structural, morphology, and magnetic properties of La0.7Ba0.1Sr0.2Mn1-xCuxO3 (x = 0, 0.10) manganite, AIP Conf. Proc., 2168, 020011.

[34] Shabanian, M., Hajibeygi, M., and Raeisi, A., 2020, “2 - FTIR characterization of layered double hydroxides and modified layered double hydroxides” in Layered Double Hydroxide Polymer Nanocomposites, Eds. Thomas, S., and Daniel, S., Woodhead Publishing, Cambridge, MA, US, 77–101.

[35] Norbert, A., Alappatt, S.M., John, S.S., Shaji, S., Remillard, S.K., Deshpande, U.P., and Reena Philip, R., 2023, Phytosynthesized Cu-doped cerium oxide nanoparticles for antibacterial application, Phys. Status Solidi A, 220 (6), 2200731.

[36] Hospodarova, V., Singovszka, E., and Stevulova, N., 2018, Characterization of cellulosic fibers by FTIR spectroscopy for their further implementation to building materials, Am. J. Anal. Chem., 9 (6), 303–310.

[37] Jayaramudu, T., Varaprasad, K., Pyarasani, R.D., Reddy, K.K., Kumar, K.D., Akbari-Fakhrabadi, A., Mangalaraja, R.V., and Amalraj, J., 2019, Chitosan capped copper oxide/copper nanoparticles encapsulated microbial resistant nanocomposite films, Int. J. Biol. Macromol., 128, 499–508.

[38] Silhavy, T.J., Kahne, D., and Walker, S., 2010, The bacterial cell envelope, Cold Spring Harbor Perspect. Biol., 2 (5), a000414.

[39] Szentirmai, É., Massie, A.R., and Kapás, L., 2021, Lipoteichoic acid, a cell wall component of Gram-positive bacteria, induces sleep and fever and suppresses feeding, Brain, Behav., Immun., 92, 184–192.

[40] Syed Khadar, Y.A., Balamurugan, A., Devarajan, V.P., Subramanian, R., and Dinesh Kumar, S., 2019, Synthesis, characterization and antibacterial activity of cobalt doped cerium oxide (CeO2:Co) nanoparticles by using hydrothermal method, J. Mater. Res. Technol., 8 (1), 267–274.

[41] Abid, S.A., Taha, A.A., Ismail, R.A., and Mohsin, M.H., 2020, Antibacterial and cytotoxic activities of cerium oxide nanoparticles prepared by laser ablation in liquid, Environ. Sci. Pollut. Res., 27 (24), 30479–30489.

[42] Wan Isahak, W.N.R., Che Ramli, Z.A., Ismail, M.W., Ismail, K., Yusop, R.M., Mohamed Hisham, M.W., and Yarmo, M.A., 2013, Adsorption-desorption of CO2 on different types of copper oxides surfaces: Physical and chemical attractions studies, J. CO2 Util., 2, 8–15.

[43] Zgurskaya, H.I., Löpez, C.A., and Gnanakaran, S., 2015, Permeability barrier of gram-negative cell envelopes and approaches to bypass it, ACS Infect. Dis., 1 (11), 512–522.

[44] Alenazy, R., 2022, Drug efflux pump inhibitors: A promising approach to counter multidrug resistance in gram-negative pathogens by targeting AcrB Protein from AcrAB-TolC multidrug efflux pump from Escherichia coli, Biology, 11 (9), 1328.

[45] Ma, X., Zhou, S., Xu, X., and Du, Q., 2022, Copper-containing nanoparticles: Mechanism of antimicrobial effect and application in dentistry-a narrative review, Front. Surg., 9, 905892.

[46] Akpasi, S.O., and Isa, Y.M., 2022, Effect of operating variables on CO2 adsorption capacity of activated carbon, kaolinite, and activated carbon–kaolinite composite adsorbent, Water-Energy Nexus, 5, 21–28.

[47] Zheng, X., Hu, L., Zhu, J., He, J., and Liu, X., 2022, Effect of the dispersion behavior of cerium oxygen species on CO2 adsorption performance, J. Environ. Chem. Eng., 10 (1), 106986.

[48] Yoshikawa, K., Kaneeda, M., and Nakamura, H., 2017, Development of novel CeO2-based CO2 adsorbent and analysis on its CO2 adsorption and desorption mechanism, Energy Procedia, 114, 2481–2487.

[49] Shinde, S.K., Dubal, D.P., Ghodake, G.S., Gomez-Romero, P., Kim, S., and Fulari, V.J., 2015, Influence of Mn incorporation on the supercapacitive properties of hybrid CuO/Cu(OH)2 electrodes, RSC Adv., 5 (39), 30478–30484.


Article Metrics

Abstract views : 1145 | views : 429

Copyright (c) 2024 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.