Qualitative Geochemical Analysis of the 2004 Indian Ocean Giant Tsunami Deposits Excavated at Seungko Mulat Located in Aceh Besar of Indonesia Using Laser-Induced Breakdown Spectroscopy


Rara Mitaphonna(1), Muliadi Ramli(2), Nazli Ismail(3), Nasrullah Idris Arief(4*)

(1) Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
(3) Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
(4) Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
(*) Corresponding Author


Laser-induced breakdown spectroscopy (LIBS) was employed to characterize the geochemical signatures layer by layer of 2004 Indian Ocean tsunami deposits in Seungko Mulat Village, Aceh Province, Indonesia. In the LIBS experimental setup, a Nd-YAG laser beam is directed towards the deposit samples, and the resulting atomic emission lines from the laser-induced plasma are captured using a spectrometer. Our analysis reveals terrestrial indicators (Fe), heavy metals (Cu, Cr, Co, Cd), and increased emission intensity of Mg, Ca, Al, K, Si, Ba, N, and O in the 2004 Indian Ocean tsunami layers. The emission intensity ratios of several elements in the 2004 Indian Ocean tsunami deposit layers, namely Ca/Ti, Si/Ti, and K/Ti, unveil notable disparities among the elements evaluated. This indicates the possibility of utilizing these ratios as reliable geochemical markers to differentiate the layer by layer of tsunami deposits. LIBS surpasses XRF in detecting nearly all elements simultaneously and identifying both light elements and specific heavy metals (Ba, Cu, Cr, Co, Cd, Pb, Ni, V, W), exceeding XRF's detection capabilities. This study emphasizes the effectiveness of LIBS as an advanced optical technique, offering speed and promise in analyzing layer-by-layer geochemical markers of the 2004 Indian Ocean tsunami deposits in Seungko Mulat Village.


LIBS; chemical profile; 2004 Indian Ocean tsunami; tsunami deposit layers; Aceh

Full Text:

Full Text PDF


[1] Ratnayake, A.S., Wijewardhana, T.D.U., Haraguchi, T., Goto, K., Ratnayake, N.P., Tetsuka, H., Yokoyama, Y., Miyairi, Y., and Attanayake, A.M.A.N.B., 2023, Sedimentological observations and geochemical characteristics of paleo-tsunami deposits along the east coast of Sri Lanka in the Indian Ocean, Quat. Int., 661, 49–59.

[2] Idris, N., Gondal, M.A., Lahna K., Ramli, M., Sari, A.M., Aldakheel, R.K., Mitaphonna, R., Dastageer, M.A., Kurihara, K., Kurniawan, K.H., and Almesserie, M.A., 2022, Geochemistry study of soil affected catastrophically by tsunami disaster triggered by 2004 Indian Ocean earthquake using a fourth harmonics (λ = 266 nm) Nd:YAG laser induced breakdown spectroscopy, Arabian J. Chem., 15 (7), 103847.

[3] Daly, P., Halim, A., Nizamuddin, N., Ardiansyah, A., Hundlani, D., Ho, E., and Mahdi, S., 2017, Rehabilitating coastal agriculture and aquaculture after inundation events: Spatial analysis of livelihood recovery in post tsunami Aceh, Indonesia, Ocean Coastal Manage., 142, 218–232.

[4] Rubin, C.M., Horton, B.P., Sieh, K., Pilarczyk, J.E., Daly, P., Ismail, N., and Parnell, A.C., 2017, Highly variable recurrence of tsunamis in the 7.400 years before the 2004 Indian Ocean tsunami, Nat. Commun., 8 (1), 16019.

[5] Watanabe, T., Tsuchiya, N., Yamasaki, S., Sawai, Y., Hosoda, N., Nara, F.W., Nakamura, T., and Komai, T., 2020, A geochemical approach for identifying marine incursions: Implications for tsunami geology on the Pacific coast of northeast Japan, Appl. Geochem., 118, 104644.

[6] Chagué-Goff, C., Szczuciński, W., and Shinozaki, T., 2017, Applications of geochemistry in tsunami research, A review, Earth-Sci. Rev., 165, 203–244.

[7] Sawai, Y., Namegaya, Y., Tamura, T., Nakashima, R., and Tanigawa, K., 2015, Shorter intervals between great earthquakes near Sendai: Scour ponds and a sand layer attributable to A.D. 1454 overwash, Geophys. Res. Lett., 42 (12), 4795–4800.

[8] Pilarczyk, J.E., Sawai, Y., Namegaya, Y., Tamura, T., Tanigawa, K., Matsumoto, D., Shinozaki, T., Fujiwara, O., Shishikura, M., Shimada, Y., Dura, T., Horton, B.P., Parnell, A.C., and Vane, C.H., 2021, A further source of Tokyo earthquakes and Pacific Ocean tsunamis, Nat. Geosci., 14 (10), 796–800.

[9] Shinozaki, T., 2021, Geochemical approach in tsunami research: Current knowledge and challenges, Geosci. Lett., 8 (1), 6.

[10] Shinozaki, T., Sawai, Y., Ikehara, M., Matsumoto, D., Shimada, Y., Tanigawa, K., and Tamura, T., 2022, Identifying tsunami traces beyond sandy tsunami deposits using terrigenous biomarkers: A case study of the 2011 Tohoku-oki tsunami in a coastal pine forest, northern Japan, Prog. Earth Planet. Sci., 9 (1), 29.

[11] Paris, R., Sabatier, P., Biguenet, M., Bougouin, A., André, G., and Roger, J., 2021, A tsunami deposit at Anse Meunier, Martinique Island: Evidence of the 1755 CE Lisbon tsunami and implication for hazard assessment, Mar. Geol., 439, 106561.

[12] Yamada, M., Fujino, S., Chiba, T., Chagué, C., and Takeda, D., 2021, Recurrence of intraplate earthquakes inferred from tsunami deposits during the past 7300 years in Beppu Bay, southwest Japan, Quat. Sci. Rev., 259, 106901.

[13] Gouramanis, C., Switzer, A.D., Jankaew, K., Bristow, C.S., Pham, D.T., and Ildefonso, S.R., 2017, High-frequency coastal overwash deposits from Phra Thong Island, Thailand, Sci. Rep., 7 (1), 43742.

[14] Syamsidik, S., Al’ala, M., Fritz, H.M., Fahmi, M., and Hafli, T.M., 2019, Numerical simulations of the 2004 Indian Ocean tsunami deposits’ thicknesses and emplacements, Nat. Hazards Earth Syst. Sci., 19 (6), 1265–1280.

[15] Mitaphonna, R., Ramli, M., Ismail, N., Kurihara, K., Subianto, M., Gondal, M.A., and Idris, N., 2021, Preliminary evaluation of chemical component in the 2004 Indian Ocean giant tsunami impacted soil using CO2 laser-induced breakdown spectroscopy (LIBS), J. Phys.: Conf. Ser., 1816 (1), 1012035.

[16] Mitaphonna, R., Ramli, M., Ismail, and Idris, N., 2023, Evaluation of geochemical signature in soil sampled from a 2004 Indian Ocean tsunami-stricken region in Aceh Province located in the western part of Indonesia using scanning electron microscopy–energy dispersive X-ray (SEM-EDX) spectroscopy and its compatibility with X-ray fluorescence (XRF) measurement, Philipp. J. Sci., 152 (1), 485–499.

[17] Mitaphonna, R., Ramli, M., Ismail, and Idris, N., 2023, X-ray fluorescence (XRF) investigation of soil sample from 2004 Indian Ocean tsunami affected region in Aceh of Indonesia, AIP Conf. Proc., 2858 (1), 050001.

[18] Moreira, S., Costa, P.J.M., Andrade, C., Ponte Lira, C., Freitas, M.C., Oliveira, M.A, and Reichart, G.J., 2017, High resolution geochemical and grain-size analysis of the AD 1755 tsunami deposit: Insights into the inland extent and inundation phases, Mar. Geol., 390, 94–105.

[19] Costa Ferreira, S.L., dos Anjos, J.P., Assis Felix, C.S., da Silva Junior, M.M., Palacio, E., and Cerda, V., 2019, Speciation analysis of antimony in environmental samples employing atomic fluorescence spectrometry – Review, TrAC, Trends Anal. Chem., 110, 335–343.

[20] Ayyıldız, M.F., Yazıcı, E., Şaylan, M., Chormey, D.S., and Bakırdere, S., 2021, Determination of copper in human blood serum by flame atomic absorption spectrometry after UV-assisted Fenton digestion using binary magnetite nanoparticles, Measurement, 186, 110108.

[21] Xu, J., Guo, Y., Yang, S., Hohl, S.V., and Zhang, W., 2022, Reliable determination of SiO2 concentrations in sediments via sequential leaching and ICP-OES/MS analysis, J. Geochem. Explor., 242, 107090.

[22] Ravansari, R., Wilson, S.C, and Tighe, M., 2020, Portable X-ray fluorescence for environmental assessment of soils: Not just a point-and-shoot method, Environ. Int., 134, 105250.

[23] Al-Musawi, M., and Kaczmarek, S., 2020, A new carbonate-specific quantification procedure for determining elemental concentrations from portable energy-dispersive X-ray fluorescence (PXRF) data, Appl. Geochem., 113, 104491.

[24] Cremers, D.A., and Chinni, R.C., 2009, Laser-induced breakdown spectroscopy capabilities and limitations, Appl. Spectrosc. Rev., 44 (6), 457–506.

[25] Brunnbauer, L., Gajarska, Z., Lohninger, H., and Limbeck, A., 2023, A critical review of recent trends in sample classification using Laser-Induced Breakdown Spectroscopy (LIBS), TrAC, Trends Anal. Chem., 159, 116859.

[26] Gaft, M., Nagli, L., Gornushkin, I., and Raichlin, Y., 2020, Review on recent advances in analytical applications of molecular emission and modelling, Spectrochim. Acta, Part B, 173, 105989.

[27] Villas-Boas, P.R., Franco, M.A., Martin-Neto, L., Gollany, H.T., and Milori, D.M.B.P., 2020, Applications of laser-induced breakdown spectroscopy for soil characterization, part II: Review of elemental analysis and soil classification, Eur. J. Soil Sci., 71 (5), 805–818.

[28] Lin, P., Wen, X., Ma, S., Liu, X., Xiao, R., Gu, Y., Chen, G., Han, Y., and Dong, D., 2023, Rapid identification of the geographical origins of crops using laser-induced breakdown spectroscopy combined with transfer learning, Spectrochim. Acta, Part B, 206, 106729.

[29] Tavares, T.R., Mouazen, A.M., Nunes, L.C., dos Santos, F.R., Melquiades, F.L., da Silva, T.R., Krug, F.J., and Molin, J.P., 2022, Laser-Induced Breakdown Spectroscopy (LIBS) for tropical soil fertility analysis, Soil Tillage Res., 216, 105250.

[30] Idris, N., Ramli, M., Khumaeni, A., and Kurihara, K., 2018, Detection of salts in soil using transversely excited atmospheric (TEA) carbon dioxide (CO2) laser-induced breakdown spectroscopy (LIBS) by the aid of a metal mesh, J. Phys.: Conf. Ser., 1011 (1), 012055.

[31] Kelsey, H.M., Engelhart, S.E., Pilarczyk, J.E., Horton, B.P., Rubin, C.M., Daryono, M.R., Ismail, N., Hawkes, A.D., Bernhardt, C.E., and Cahill, N., 2015, Accommodation space, relative sea level, and the archiving of paleo-earthquakes along subduction zones, Geological, 43 (8), 675–678.

[32] Folk, R.L., and Ward, W.C., 1957, Brazos River bar [Texas]; A study in the significance of grain size parameters, J. Sediment. Res., 27 (1), 3–26.

[33] Blott, S.J., and Pye, K., 2001, GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments, Earth Surf. Processes Landforms, 26 (11), 1237–1248.

[34] Hong, I., Dura, T., Ely, L.L., Horton, B.P., Nelson, A.R., Cisternas, M., Nikitina, D., and Wesson, R.L, 2017, A 600-year-long stratigraphic record of tsunamis in south-central Chile, Holocene, 27 (1), 39–51.

[35] Mitaphonna, R., Ramli, M., Ismail, N., Hartadi, B.S., and Idris, N., 2023, Identification of possible preserved 2004 Indian Ocean tsunami deposits collected from Pulot Village in Aceh Besar Regency, Indonesia, J. Phys.: Conf. Ser., 2582 (1), 012033.

[36] Bellanova, P., Frenken, M., Reicherter, K., Jaffe, B., Szczuciński, W., and Schwarzbauer, J., 2020, Anthropogenic pollutants and biomarkers for the identification of 2011 Tohoku-oki tsunami deposits (Japan), Mar. Geol., 422, 106117.

[37] Ciucci, A., Palleschi, V., Rastelli, S., Salvetti, A., Singh, D.P., and Tognoni, E., 1999, CF-LIPS: A new approach to LIPS spectra analysis, Laser Part. Beams, 17 (4), 793–797.

[38] Yu, N.T., Yen, J.Y., Chen, W.S., Yen, I.C., and Liu, J.H., 2016, Geological records of western Pacific tsunamis in northern Taiwan: AD 1867 and earlier event deposits, Mar. Geol., 372, 1–16.

[39] Watanabe, T., Kagami, S., and Niwa, M., 2022, Geochemical and heavy mineral signatures of marine incursions by a paleotsunami on the Miyazaki plain along the Nankai–Suruga trough, the Pacific coast of southwest Japan, Mar. Geol., 444, 106704.

[40] Chagué-Goff, C., Chan, J.C.H., Goff, J., and Gadd, P., 2016, Late Holocene record of environmental changes, cyclones and tsunamis in a coastal lake, Mangaia, Cook Islands, Isl. Arc, 25 (5), 333–349.

[41] Vött, A., Brückner, H., Brockmüller, S., Handl, M., May, S.M., Gaki-Papanastassiou, K., Herd, R., Lang, F., Maroukian, H., Nelle, O., and Papanastassiou, D., 2009, Traces of Holocene tsunamis across the Sound of Lefkada, NW Greece, Global Planet. Change, 66 (1-2), 112–128.

DOI: https://doi.org/10.22146/ijc.88086

Article Metrics

Abstract views : 656 | views : 241

Copyright (c) 2024 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.