Synthesis of Mesoporous Silica from Palm Oil Boiler Ash (MS-POBA) with Addition of Methyl Ester Sulfonate as a Template for Free Fatty Acid Adsorption from Crude Palm Oil (CPO)

https://doi.org/10.22146/ijc.87703

Cita Sitohang(1), Agus Kuncaka(2), Adhitasari Suratman(3*)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(*) Corresponding Author

Abstract


The synthesis of mesoporous material by utilizing palm oil boiler ash (POBA) waste as the silica source and methyl ester sulfonate (MES) surfactant as the template for a high-porosity was investigated for free fatty acids (FFA) adsorption. The research was initiated with silica extraction from POBA by sodium hydroxide addition through the sol-gel precipitation method. Silica modification was carried out with MES surfactant and 3-aminopropyltrimethoxysilane (APTMS) as the co-structure-directing agent (CSDA) in different calcination temperatures. Mesoporous silica-POBA (MS-POBA) free template had a surface area, pore diameter, and pore volume (41.033 m2/g, 4.180 nm, and 0.250 cm3/g) lower than MS-POBA with the template (71.0147 m2/g, 7.923 nm, and 0.524 cm3/g). The ability of MS-POBA to adsorb FFA reached its optimum conditions with an adsorption time of 20 min and an adsorbent dosage of 0.24 g. The FFA removal by MS-POBA with the template was found to have higher adsorption ability, which was 35.54%, compared to the MS-POBA free template of 26.68%. The high porosity of MS-POBA with a template makes the FFA adsorption capacity of this material higher than MS-POBA free template.

Keywords


silica; surfactant; MES; FFA

Full Text:

Full Text PDF


References

[1] Anonymous, 2021, Statistik Kelapa Sawit Indonesia 2021, BPS - Statistics Indonesia, Jakarta, Indonesia.

[2] Sequiño, A.C., and Magallon-avenido, J., 2015, The world’s leader in the palm oil industry: Indonesia, IAMURE Int. J. Ecol. Conserv., 13, 51–60.

[3] Bukit, N., Ginting, E.M., Pardede, I.S., Frida, E., and Bukit, B.F., 2018, Mechanical properties of composite thermoplastic HDPE/natural rubber and palm oil boiler ash as a filler, J. Phys.: Conf. Ser., 1120 (1), 012003.

[4] Ginting, E.M., Bukit, N., Frida, E., and Bukit, B.F., 2020, Microstructure and thermal properties of natural rubber compound with palm oil boilers ash for nanoparticle filler, Case Stud. Therm. Eng., 17, 100575.

[5] Utama, P.S., Yamsaensung, R., and Sangwichien, C., 2018, Silica gel derived from palm oil mill fly ash, Songklanakarin J. Sci. Technol., 40 (1), 121–126.

[6] Ginting, E.M., Motlan, M., Bukit, N., Saragih, M.T., Sinaga, A.H., and Frida, E., 2018, Preparation and characterization of oil palm empty bunches powder, J. Phys.: Conf. Ser., 1120 (1), 012004.

[7] Adha, F.F., 2019, Sintesis Silika dari Abu Boiler Pabrik Kelapa Sawit dengan Variasi Konsentrasi Pelarut NaOH dan Waktu Ekstraksi, Thesis, Agro-Industrial Engineering, Faculty of Agricultural Technology, Institut Pertanian Bogor, Indonesia.

[8] Andrian, R., Ningrum, R.L., and Mardiah, M., 2020, Pembuatan silika dari abu boiler kelapa sawit sebagai katoda udara pada baterai logam udara, Jurnal Chemurgy, 4 (2), 24–29.

[9] Indrasti, N.S., Ismayana, A., Maddu, A., and Utomo, S.S., 2020, Synthesis of nano-silica from boiler ash in the sugar cane industry using the precipitation method, Int. J. Technol., 11, 422–435.

[10] Schubert, U.S., and Hüsing, N., 2006, Synthesis of Inorganic Materials, Wiley-VCH Verlag GmbH & Co, Weinheim, Germany.

[11] Ubaid, A., Hidayat, N., and Munasir, M., 2017, Aging time effect on porous characteristics of natural mud-based silica prepared by hydrothermal-coprecipitation route, IOP Conf. Ser.: Mater. Sci. Eng., 202 (1), 012022.

[12] Kubra, K.T., Hasan, M.M., Hasan, M.N., Salman, M.S., Khaleque, M.A., Sheikh, M.C., Rehan, A.I., Rasee, A.I., Waliullah, R.M., Awual, M.E., Hossain, M.S., Alsukaibi, A.K.D., Alshammari, H.M., and Awual, M.R., 2023, The heavy lanthanide of Thulium(III) separation and recovery using specific ligand-based facial composite adsorbent, Colloids Surf., A, 667, 131415.

[13] Rasee, A.I., Awual, E., Rehan, A.I., Hossain, M.S., Waliullah, R.M., Kubra, K.T., Sheikh, M.C., Salman, M.S., Hasan, M.N., Hasan, M.M., Marwani, H.M., Islam, A., Khaleque, M.A., and Awual, M.R., 2023, Efficient separation, adsorption, and recovery of Samarium(III) ions using novel ligand-based composite adsorbent, Surf. Interfaces, 41, 103276.

[14] Yokoi, T., and Tatsumi, T., 2007, Synthesis of mesoporous silica materials by using anionic surfactants as template, J. Jpn. Pet. Inst., 50 (6), 299–311.

[15] Gao, C., Qiu, H., Zeng, W., Sakamoto, Y., Terasaki, O., Sakamoto, K., Chen, Q., and Che, S., 2006, Formation mechanism of anionic surfactant-templated mesoporous silica, Chem. Mater., 18 (16), 3904–3914.

[16] Han, L., Gao, C., Wu, X., Chen, Q., Shu, P., Ding, Z., and Che, S., 2011, Anionic surfactants templating route for synthesizing silica hollow spheres with different shell porosity, Solid State Sci., 13 (4), 721–728.

[17] Andriyani, A., 2012, Sintesis Material Mesopori Silika dari Tetraetilortosilikat (TEOS) Menggunakan Natrium Risinoleat sebagai Template dan 3-aminopropiltrimetoksisilana (APMS) sebagai Co- Structure Directing Agent (CSDA), Dissertation, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Indonesia.

[18] Gai, F., Zhou, T., Chu, G., Li, Y., Liu, Y., Huo, Q., and Akhtar, F., 2016, Mixed anionic surfactant-templated mesoporous silica nanoparticles for fluorescence detection of Fe 3+, Dalton Trans., 45 (2), 508–514.

[19] Utama, P.S., Bahri, S., Prawiranegara, B.A., Heltina, D., and Saputra, E., 2022, Synthesis of synthetic amorphous silica powder from palm oil mill fly ash extract by carbon dioxide impregnation, Mater. Today: Proc., 63, S297–S300.

[20] Wibowo, A.D.K., Yoshi, L.A., Handayani, A.S., and Joelianingsih, J., 2021, Synthesis of polymeric surfactant from palm oil methyl ester for enhanced oil recovery application, Colloid Polym. Sci., 299 (1), 81–92.

[21] Lin, R., 2016, The Co-Structure Directing Agent (CSDA) Approach to Mesoporous Silica Formation - Exploring the Assembly Characteristics, Dissertation, Department of Chemistry, Faculty of Science, Lund University, Sweden.

[22] Waliullah, R.M., Rehan, A.I., Awual, M.E., Rasee, A.I., Sheikh, M.C., Salman, M.S., Hossain, M.S., Hasan, M.M., Kubra, K.T., Hasan, M.N., Marwani, H.M., Islam, A., Rahman, M.M., Khaleque, M.A., and Awual, M.R., 2023, Optimization of toxic dye removal from contaminated water using chitosan-grafted novel nanocomposite adsorbent, J. Mol. Liq., 388, 122763.

[23] Ahn, Y., and Kwak, S.Y., 2020, Functional mesoporous silica with controlled pore size for selective adsorption of free fatty acid and chlorophyll, Microporous Mesoporous Mater., 306, 110410.

[24] Kongnoo, A., Tontisirin, S., Worathanakul, P., and Phalakornkule, C., 2017, Surface characteristics and CO2 adsorption capacities of acid-activated zeolite 13X prepared from palm oil mill fly ash, Fuel, 193, 385–394.

[25] Porrang, S., Rahemi, N., Davaran, S., Mahdavi, M., and Hassanzadeh, B., 2021, Synthesis of temperature/pH dual-responsive mesoporous silica nanoparticles by surface modification and radical polymerization for anti-cancer drug delivery, Colloids Surf., A, 623, 126719.

[26] Babu, K., Maurya, N.K., Mandal, A., and Saxena, V.K., 2015, Synthesis and characterization of sodium methyl ester sulfonate for chemically-enhanced oil recovery, Braz. J. Chem. Eng., 32 (3), 795–803.

[27] Al-Abboodi, S.M.T., Al-Shaibani, E.J.A., and Alrubai, E.A., 2020, Preparation and characterization of nano silica prepared by different precipitation methods, IOP Conf. Ser.: Mater. Sci. Eng., 978 (1), 012031.

[28] Hasanah, M., Sembiring, T., Sebayang, K., Humaidi, S., Rahmadsyah, R., Saktisahdan, T.J., Handoko, F., and Ritonga, S.I., 2021, Extraction of silica dioxide (SiO2) from mount Sinabung volcanic ash with coprecipitation method, IOP Conf. Ser.: Mater. Sci. Eng., 1156 (1), 012015.

[29] Shamim, S., Hornyak, G.L., Crespy, D., Kyaw, H., and Bora, T., 2022, Morphology and visible photoluminescence modulation in dye-free mesoporous silica nanoparticles using a simple calcination step, Mater. Res. Bull., 152, 111842.

[30] Barma, M.D., Kannan, S.D., Indiran, M.A., Rajeshkumar, S., and Kumar, R.P., 2020, Antibacterial activity of mouthwash incorporated with silica nanoparticles against S. aureus, S. mutans, E. faecalis: An in-vitro study, J. Pharm. Res. Int., 32 (16), 25–33.

[31] Mitra, J., Ghosh, M., Bordia, R.K., and Sharma, A., 2013, Photoluminescent electrospun submicron fibers of hybrid organosiloxane and derived silica, RSC Adv., 3 (20), 7591–7600.

[32] Khoeini, M., Najafi, A., Rastegar, H., and Amani, M., 2019, Improvement of hollow mesoporous silica nanoparticles synthesis by hard-templating method via CTAB surfactant, Ceram. Int., 45 (10), 12700–12707.

[33] Yuan, N., Cai, H., Liu, T., Huang, Q., and Zhang, X., 2019, Adsorptive removal of methylene blue from aqueous solution using coal fly ash-derived mesoporous silica material, Adsorpt. Sci. Technol., 37 (3-4), 333–348.

[34] Nguyen, N.H., Truong-Thi, N.H., Nguyen, D.T.D., Ching, Y.C., Huynh, N.T., and Nguyen, D.H., 2022, Non-ionic surfactants As co-templates to control the mesopore diameter of hollow mesoporous silica nanoparticles for drug delivery applications, Colloids Surf., A, 655, 130218.

[35] Kepdieu, J.M., Tchanang, G., Njimou, J.R., Djangang, C.N., Maicaneanu, S.A., and Tizaoui, C., 2024, Adsorptive removal of palm oil free fatty acids onto silica-smectite composite: A statistical study using Box–Behnken design in response surface methodology, Chem. Pap., 78 (3), 1775–1790.

[36] Sheikh, M.C., Hasan, M.M., Hasan, M.N., Salman, M.S., Kubra, K.T., Awual, M.E., Waliullah, R.M., Rasee, A.I., Rehan, A.I., Hossain, M.S., Marwani, H.M., Islam, A., Khaleque, M.A., and Awual, M.R., 2023, Toxic cadmium(II) monitoring and removal from aqueous solution using ligand-based facial composite adsorbent, J. Mol. Liq., 389, 122854.

[37] Sitinjak, E.M., Masmur, I., Marbun, N.V.M.D., Gultom, G., Sitanggang, Y., and Mustakim, M., 2022, Preparation of Mg, Ca, Sr and Ba-based silicate as adsorbent of free fatty acid from crude palm oil, Chem. Data Collect., 41, 100910.

[38] Muhdarina, M., Nurhayati, N., Pahlepi, M.R., Pujiana, Z., and Bahri, S., 2019, Penyiapan arang aktif pelepah kelapa sawit sebagai adsorben asam lemak bebas dari CPO (Crude Palm Oil), al-Kimiya, 7 (1), 7–13.

[39] Ayu Putranti, M.L.T., Wirawan, S.K., and Bendiyasa, I.M., 2018, Adsorption of free fatty acid (FFA) in low-grade cooking oil used activated natural zeolite as adsorbent, IOP Conf. Ser.: Mater. Sci. Eng., 299 (1), 012085.



DOI: https://doi.org/10.22146/ijc.87703

Article Metrics

Abstract views : 2461 | views : 1313


Copyright (c) 2024 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.