Nano Titanium(IV) Oxide Modified Carbon Paste Electrode for Analysis of Butylated Hydroxytoluene Concentration in Lotion by Cyclic Voltammetry

https://doi.org/10.22146/ijc.87398

Nur Anisa Rosyiidah(1), Pirim Setiarso(2*)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Jl. Ketintang, Surabaya 60231, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Jl. Ketintang, Surabaya 60231, Indonesia
(*) Corresponding Author

Abstract


This research focuses on the manufacture and application of TiO2 NPs modified carbon paste electrodes (TiO2 NPs-CPE) to analyze butylated hydroxytoluene (BHT) concentration in lotions by cyclic voltammetry. This study aimed to determine the best composition of TiO2 NPs-CPE, optimal addition of phosphate buffer pH, application of deposition time, and optimal scan rate by cyclic voltammetry. BHT solution was used to determine the electrode with the best conditions so that an optimal voltammogram was obtained at a composition of 3:5:2 electrode (carbon:TiO2 NPs:paraffin oil), phosphate buffer pH 8, deposition time of 25 s, and scan rate of 100 mV s−1. Obtaining BHT levels of samples A, B, and C with TiO2 NPs-CPE by cyclic voltammetry were 0.4686, 0.48029, and 0.39044%, while the concentration of samples in HPLC were 0.46873, 0.48111, and 0.39191%. A significance value of 0.985 (> 0.05) was obtained, meaning there was no significant difference in the results of measuring the concentration of BHT in the lotion samples.

Keywords


CPE; TiO2 NPs; butylated hydroxytoluene; cyclic voltammetry

Full Text:

Full Text PDF


References

[1] Silva, S., Ferreira, M., Oliveira, A.S., Magalhães, C., Sousa, M.E., Pinto, M., Sousa Lobo, J.M., and Almeida, I.F., 2019, Evolution of the use of antioxidants in anti‐ageing cosmetics, Int. J. Cosmet. Sci., 41 (4), 378–386.

[2] Hoang, H.T., Moon, J.Y., and Lee, Y.C., 2021, Natural antioxidants from plant extracts in skincare cosmetics: Recent applications, challenges and perspectives, Cosmetics, 8 (4), 106.

[3] Lanigan, R.S., and Yamarik, T.A., 2002, Final report on the safety assessment of BHT, Int. J. Toxicol., 21 Suppl. 2), 19–94.

[4] Al-abdaly, Y.Z., Al-Hamdany, E., and Al-Kennary, E.R., 2021, Toxic effects of butylated hydroxytoluene in rats, Iraqi J. Vet. Sci., 35 (1), 121–128.

[5] Granum, B., Bernauer, U., Bodin, L., Chaudhry, Q., Pieter Jan, C., Dusinska, M., Ezendam, J., Gaffet, E., Galli, C.L., Panteri, E., Rogiers, V., Rousselle, C., Stępnik, M., Vanhaecke, T., Wijnhoven, S., Koutsodimou, A., Uter, W., and von-Goetz, N., 2023, SCCS scientific opinion on Butylated hydroxytoluene (BHT) - SCCS/1636/21, Regul. Toxicol. Pharm., 138, 105312.

[6] Wang, H., Liu, X., Tu, M., Xu, X., Yang, S., and Chen, D., 2022, Current sample preparation methods and analytical techniques for the determination of synthetic antioxidants in edible oils, J. Sep. Sci., 45 (20), 3874–3886.

[7] Chen, F., Fang, B., Li, P., and Wang, S., 2021, A fast and validated HPLC method for the simultaneous analysis of five 5-HT3 receptor antagonists via the quantitative analysis of multicomponents by a single marker, Int. J. Anal. Chem., 2021 (1), 5533646.

[8] Yabré, M., Ferey, L., Somé, T.I., Sivadier, G., and Gaudin, K., 2020, Development of a green HPLC method for the analysis of artesunate and amodiaquine impurities using quality by design, J. Pharm. Biomed. Anal., 190, 113507.

[9] Gould, O., Nguyen, N., and Honeychurch, K.C., 2023, New applications of gas chromatography and gas chromatography-mass spectrometry for novel sample matrices in the forensic sciences: A literature review, Chemosensors, 11 (10), 527.

[10] Elgrishi, N., Rountree, K.J., McCarthy, B.D., Rountree, E.S., Eisenhart, T.T., and Dempsey, J.L., 2018, A practical beginner’s guide to cyclic voltammetry, J. Chem. Educ., 95 (2), 197–206.

[11] Chooto, P., 2019, “Cyclic Voltammetry and Its Applications” in Voltammetry, Eds. Maxakato, N.W., Surprise Gwebu, S., and Mhlongo, G.H., IntechOpen, Rijeka, Croatia.

[12] Irdhawati, I., Methaninditya, N.K.S.M., and Putra, A.A.B., 2023, Carbon paste electrode modified by dibenzo-18-crown-6 for the determination of paracetamol using differential pulse voltammetry technique, Indones. J. Chem., 23 (1), 53–61.

[13] Gómez, Y., Fernández, L., Borrás, C., Mostany, J., and Scharifker, B., 2011, Characterization of a carbon paste electrode modified with tripolyphosphate-modified kaolinite clay for the detection of lead, Talanta, 85 (3), 1357–1363.

[14] Devnani, H., and Sharma, C., 2023, “Recent Advances in Voltammetric Sensing” in Frontiers in Voltammetry, Eds., Rajendrachari, S., Kenchappa Somashekharappa, K., Peramenahalli Chikkegouda, S., and Vasanth, S., IntechOpen, Rijeka, Croatia.

[15] Tanuja, S.B., Kumara-Swamy, B.E., and Pai, K.V., 2017, Electrochemical determination of paracetamol in presence of folic acid at nevirapine modified carbon paste electrode: A cyclic voltammetric study, J. Electroanal. Chem., 798, 17–23.

[16] Hassanein, A., Salahuddin, N., Matsuda, A., Kawamura, G., and Elfiky, M., 2017, Fabrication of biosensor based on chitosan-ZnO/polypyrrole nanocomposite modified carbon paste electrode for electroanalytical application, Mater. Sci. Eng., C, 80, 494–501.

[17] Arun, J., Nachiappan, S., Rangarajan, G., Alagappan, R.P., Gopinath, K.P., and Lichtfouse, E., 2023, Synthesis and application of titanium dioxide photocatalysis for energy, decontamination and viral disinfection: A review, Environ. Chem. Lett., 21 (1), 339–362.

[18] Rawski, D.P., 2001, “Pulp and Paper: Nonfibrous Components” in Encyclopedia of Materials: Science and Technology, Eds. Buschow, K.H.J., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S., Veyssière, P., Elsevier, Oxford, UK, 7908–7910.

[19] Falola, T.O., 2022, Nanoparticles modified electrodes: Synthesis, modification, and characterization—A review, World J. Nano Sci. Eng., 12 (3), 29–62.

[20] Zhang, M.K., Chen, W., Xu, M.L., Wei, Z., Zhou, D., Cai, J., and Chen, Y.X., 2021, How buffers resist electrochemical reaction-induced pH shift under a rotating disk electrode configuration, Anal. Chem., 93 (4), 1976–1983.

[21] Shen, L.L., Zhang, G.R., Li, W., Biesalski, M., and Etzold, B.J.M., 2017, Modifier-free microfluidic electrochemical sensor for heavy-metal detection, ACS Omega, 2 (8), 4593–4603.

[22] Praveen, P., Viruthagiri, G., Mugundan, S., and Shanmugam, N., 2014, Structural, optical and morphological analyses of pristine titanium di-oxide nanoparticles – Synthesized via sol–gel route, Spectrochim. Acta, Part A, 117, 622–629.

[23] Fatoni, A., Widanarto, W., Anggraeni, M.D., and Dwiasi, D.W., 2022, Glucose biosensor based on activated carbon – NiFe2O4 nanoparticles composite modified carbon paste electrode, Results Chem., 4, 100433.

[24] Jakubczyk, M., and Michalkiewicz, S., 2018, Electrochemical behavior of butylated hydroxyanisole and butylated hydroxytoluene in acetic acid solutions and their voltammetric determination in pharmaceutical preparations, Int. J. Electrochem. Sci., 13 (5), 4251–4266.

[25] Racine, P., 1981, Influence du pH et de la lumiere sur la stabilité de quelques antioxydants, Int. J. Cosmet. Sci., 3 (3), 125–137.

[26] Monteiro, M.C.O., Mirabal, A., Jacobse, L., Doblhoff-Dier, K., Barton, S.C., and Koper, M.T.M., 2021, Time-resolved local pH measurements during CO2 reduction using scanning electrochemical microscopy: Buffering and tip effects, JACS Au, 1 (11), 1915–1924.

[27] Kolliopoulos, A.V., Metters, J.P., and Banks, C.E., 2013, Screen printed graphite electrochemical sensors for the voltammetric determination of antimony(III), Anal. Methods, 5 (14), 3490–3496.

[28] Je, H., Chow, K.F., and Chang, B.Y., 2024, Voltammetry of constant phase elements: Analyzing scan rate effects, J. Electrochem. Sci. Technol., 15 (3), 427–435.

[29] Zhou, H., Chhin, D., Morel, A., Gallant, D., and Mauzeroll, J., 2022, Potentiodynamic polarization curves of AA7075 at high scan rates interpreted using the high field model, npj Mater. Degrad., 6 (1), 20.

[30] Zhu, H., Li, Y., Song, Y., Zhao, G., Wu, W., Zhou, S., Wang, D., and Xiao, W., 2020, Effects of cyclic voltammetric scan rates, scan time, temperatures and carbon addition on sulphation of Pb disc electrodes in aqueous H2SO4, Mater. Technol., 35 (3), 135–140.

[31] Gopu, G., Muralidharan, B., Vedhi, C., and Manisankar, P., 2012, Determination of three analgesics in pharmaceutical and urine sample on nano poly(3,4-ethylenedioxythiophene) modified electrode, Ionics, 18 (1), 231–239.



DOI: https://doi.org/10.22146/ijc.87398

Article Metrics

Abstract views : 6261 | views : 2738


Copyright (c) 2025 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.