PLA/LLDPE/Organo-Precipitated Calcium Carbonate Composites Containing LLDPE-g-OA Compatibilizers: Mechanical, Physical, Thermal, and Morphology

Ahmad Hafizullah Ritonga(1*), Barita Aritonang(2), Gusliani Eka Putri(3), Khairiah Khairiah(4), Enzo Wiranta Battra Siahaan(5), Debi Meilani(6)

(1) Institut Kesehatan Medistra Lubuk Pakam, Deli Serdang 20512, Indonesia
(2) Institut Kesehatan Medistra Lubuk Pakam, Deli Serdang 20512, Indonesia
(3) Department of Medical Laboratory Technology, Sekolah Tinggi Ilmu Kesehatan Syedza Saintika
(4) Universitas Muslim Nusantara Al Washliyah, Medan 20147, Indonesia
(5) Department of Mechanical Engineering, Universitas Darma Agung, Medan 20153, Indonesia
(6) Institut Kesehatan Medistra Lubuk Pakam, Deli Serdang 20512, Indonesia
(*) Corresponding Author


A plastic composite consisting of polylactic acid (PLA), linear low-density polyethylene (LLDPE), oleic acid-grafted linear low-density polyethylene (LLDPE-g-OA) compatibilizer, and organo-precipitated calcium carbonate (O-PCC) have been successfully made in the molten state. This study aims to characterize the mechanical, physical, thermal, and morphological characteristics of the PLA/LLDPE/O-PCC plastic composite in the presence of an LLDPE-g-OA compatibilizer. The plastic composite was prepared by blending PLA, LLDPE, LLDPE-g-OA, and O-PCC using an internal mixer with a heating of 160 °C and a rotation of 100 rpm. LLDPE and LLDPE-g-OA are put together into the inner mixer chamber until melted, followed by PLA and O-PCC. The most optimum plastic composite composition is PLA/LLDPE/LLDPE-g-g-OA/O-PCC (67.5:22.5:5:5). The mechanical properties showed an increase in tensile strength of 9.78 MPa. The physical properties showed that the minimum water absorption was 0.74%, the biodegradation in humus soil showed a degradation rate of 0.09% per day, and the thermal properties showed better stability with a melting point of 146.5 °C. The FTIR spectrum is similar to the polymer blend without O-PCC. The morphology indicates that the composite is compatible and homogeneous. This semi-biodegradable plastic composite has significant implications for reducing the accumulation of plastic waste in the environment.


PLA; LLDPE; O-PCC; LLDPE-g-OA; Composite

Full Text:

Full Text PDF


[1] Zhao, X., Wang, Y., Chen, X., Yu, X., Li, W., Zhang, S., Meng, X., Zhao, Z.M., Dong, T., Anderson, A., Aiyedun, A., Li, Y., Webb, E., Wu, Z., Kunc, V., Ragauskas, A., Ozcan, S., and Zhu, H., 2023, Sustainable bioplastics derived from renewable natural resources for food packaging, Matter, 6 (1), 97–127.

[2] Ahamed, A., Veksha, A., Giannis, A., and Lisak, G., 2021, Flexible packaging plastic waste – environmental implications, management solutions, and the way forward, Curr. Opin. Chem. Eng., 32, 100684.

[3] Kan, M., and Miller, S.A., 2022, Environmental impacts of plastic packaging of food products, Resour. Conserv. Recycl., 180, 106156.

[4] Alshabanat, M., 2019, Morphological, thermal, and biodegradation properties of LLDPE/treated date palm waste composite buried in a soil environment, J. Saudi Chem. Soc., 23 (3), 355–364.

[5] Jaiswal, P.B., Pushkar, B.K., Maikap, K., and Mahanwar, P.A., 2022, Abiotic aging assisted bio-oxidation and degradation of LLDPE/LDPE packaging polyethylene film by stimulated enrichment culture, Polym. Degrad. Stab., 206, 110156.

[6] Qin, Q., Yang, Y., Yang, C., Zhang, L., Yin, H., Yu, F., and Ma, J., 2022, Degradation and adsorption behavior of biodegradable plastic PLA under conventional weathering conditions, Sci. Total Environ., 842, 156775.

[7] Kalita, N.K., Sarmah, A., Bhasney, S.M., Kalamdhad, A., and Katiyar, V., 2021, Demonstrating an ideal compostable plastic using biodegradability kinetics of poly(lactic acid) (PLA) based green biocomposite films under aerobic composting conditions, Environ. Challenges, 3, 100030.

[8] Andrade, M.S., Ishikawa, O.H., Costa, R.S., Seixas, M.V.S., Rodrigues, R.C.L.B., and Moura, E.A.B., 2022, development of sustainable food packaging material based on biodegradable polymer reinforced with cellulose nanocrystals, Food Packag. Shelf Life, 31, 100807.

[9] Engku Zawawi, E.Z., Kamarun, D., Mohd Dahan, R., and Adzhar, N.H.M., 2018, Mechanical, morphological and thermal properties of linear low density polyethylene/poly(lactic acid) blends, AIP Conf. Proc., 1985 (1), 30012.

[10] Singh, S., Ghosh, A.K., Maiti, S.N., Gupta, R.K., and Bhattacharya, S., 2021, Rheological aspects and film processability of poly(lactic acid)/linear low‐density polyethylene blends, Polym. Eng. Sci., 61 (1), 85–94.

[11] Bhasney, S.M., Bhagabati, P., Kumar, A., and Katiyar, V., 2019, Morphology and crystalline characteristics of polylactic acid [PLA]/linear low density polyethylene [LLDPE]/microcrystalline cellulose [MCC] fiber composite, Compos. Sci. Technol., 171, 54–61.

[12] Ritonga, A.H., Jamarun, N., Arief, S., Aziz, H., Tanjung, D.A., and Isfa, B., 2023, The effect of oleic acid-grafted linear low-density polyethylene as compatibilizer on the properties of linear low-density polyethylene/cyclic natural rubber blends, Int. J. Technol., 14 (1), 162–172.

[13] Petchwattana, N., Naknaen, P., and Narupai, B., 2020, Combination effects of reinforcing filler and impact modifier on the crystallization and toughening performances of poly (lactic acid), eXPRESS Polym. Lett., 14 (9), 848–859

[14] Piekarska, K., Piorkowska, E., and Bojda, J., 2017, The influence of matrix crystallinity, filler grain size and modification on properties of PLA/calcium carbonate composites, Polym. Test., 62, 203–209.

[15] Kudryavtseva, V.L., Zhao, L., Tverdokhlebov, S.I., and Sukhorukov, G.B., 2017, Fabrication of PLA/PLA/CaCO3 hybrid micro-particles as carriers for water-soluble bioactive molecules, Colloids Surf., B, 157, 481–489.

[16] Islam, M.S., Islam, M.M., and Islam, K.N., 2020, "The effect of CaCO3 nanoparticles and chitosan on the properties of PLA based biomaterials for biomedical applications" in Encyclopedia of Renewable and Sustainable Materials, Eds. Hashmi, S., and Choudhury, I.A., Elsevier, Oxford, 736–745.

[17] Ritonga, A.H., Jamarun, N., Arief, S., Aziz, H., Tanjung, D.A., Isfa, B., Sisca, V., and Faisal, H., 2022, Organic modification of precipitated calcium carbonate nanoparticles as filler in LLDPE/CNR blends with the presence of coupling agents: Impact strength, thermal, and morphology, J. Mater. Res. Technol., 17, 2326–2332.

[18] Zapata, P.A., Palza, H., Díaz, B., Armijo, A., Sepúlveda, F., Ortiz, J.A., Ramírez, M.P., and Oyarzún, C., 2019, Effect of CaCO3 nanoparticles on the mechanical and photo-degradation properties of LDPE, Molecules, 24 (1), 126.

[19] Aritonang, B., Tamrin, T., Wirjosentono, B., and Eddiyanto, E., 2020, Effect of Graft copolymerization of oleic acid on to cyclic natural rubber in polyamide, Case Stud. Therm. Eng., 21, 100690.

[20] Rahayu, I., Zainuddin, A., and Hendrana, S., 2020, Improved maleic anhydride grafting to linear low density polyethylene by microencapsulation method, Indones. J. Chem., 20 (5), 1110–1118.

[21] dos Anjos, E.G.R., Backes, E.H., Marini, J., Pessan, L.A., Montagna, L.S., and Passador, F.R., 2019, Effect of LLDPE-g-MA on the rheological, thermal, mechanical properties and morphological characteristic of PA6/LLDPE blends, J. Polym. Res., 26 (6), 134.

[22] Tanjung, D.A., Jamarun, N., Arief, S., Aziz, H., Ritonga, A.H., and Isfa, B., 2022, Influence of LLDPE-g-MA on mechanical properties, degradation performance and water absorption of thermoplastic sago starch blends, Indones. J. Chem., 22 (1), 171–178.

[23] Sisca, V., Tanjung, D.A., Syukri, S., Zilfa, Z., and Jamarun, N., 2021, Catalytic activity of precipitated calcium carbonate for biodiesel production, Rasayan J. Chem., 14 (3), 1587–1593.

[24] Azis, Y., Jamarun, N., Alfarisi, C.D., Mutamima, A., and Sisca, V., 2022, Precipitated calcium carbonate (PCC) from coral reef as raw material for synthesis of hydroxyapatite nanoparticles, Rasayan J. Chem., 15 (1), 96–101.

[25] Ritonga, A.H., Jamarun, N., Arief, S., Aziz, H., Tanjung, D.A., and Isfa, B., 2022, Improvement of mechanical, thermal, and morphological properties of organo-precipitated calcium carbonate filled LLDPE/cyclic natural rubber composites, Indones. J. Chem., 22 (1), 233–241.

[26] Avolio, R., Gentile, G., Avella, M., Carfagna, C., and Errico, M.E., 2013, Polymer–filler interactions in PET/CaCO3 nanocomposites: Chain ordering at the interface and physical properties, Eur. Polym. J., 49 (2), 419–427.

[27] Hafidzah, F., Bijarimi, M., Alhadadi, W., Salleh, S., Norazmi, M., and Normaya, E., 2021, Statistical study on the interaction factors of polypropylene-graft-maleic anhydride (PP-g-MA) with graphene nanoplatelet (GNP) at various poly(lactic acid)/polypropylene (PLA/PP) blends ratio, Indones. J. Chem., 21 (1), 234–242.

[28] Amato, P., Muscetta, M., Venezia, V., Cocca, M., Gentile, G., Castaldo, R., Marotta, R., and Vitiello, G., 2023, Eco-sustainable design of humic acids-doped ZnO nanoparticles for UVA/light photocatalytic degradation of LLDPE and PLA plastics, J. Environ. Chem. Eng., 11 (1), 109003.

[29] Doufnoune, R., Haddaoui, N., and Riahi, F., 2008, The effects of coupling agents on the mechanical, rheological and thermal properties of calcium carbonate-filled LDPE compatibilized with maleic anhydride-g-LDPE (Part II), Int. J. Polym. Mater. Polym. Biomater., 57 (7), 690–708.

[30] Song, L., Yang, B., Du, X., Ren, J., Wang, W., Zhang, Q., Chi, W., Cong, F., and Shi, Y., 2023, Functionalized poly(ethylene-octene)/linear low-density polyethylene prepared by melt free-radical grafting reaction and its potential in toughening poly(butylene terephthalate) resins, Ind. Eng. Chem. Res., 62 (19), 7464–7480.


Article Metrics

Abstract views : 986 | views : 517

Copyright (c) 2023 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.