Synthesis of Cellulose Acetate from Screw Pine (Pandanus tectorius) Leaves for Enhancing Water Permeability and Fouling Resistance of PVDF Membrane

https://doi.org/10.22146/ijc.85726

Elyna Wahyu Trisnawati(1), Venty Suryanti(2*), Edi Pramono(3), Indri Sri Cahyani(4), Diah Safriyani(5)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Surakarta 57126, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Surakarta 57126, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Surakarta 57126, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Surakarta 57126, Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Surakarta 57126, Indonesia
(*) Corresponding Author

Abstract


Cellulose derivatives from natural resources continuously develop to find the best hydrophobic polymer-based membrane technology performance. This study was conducted to improve the hydrophilicity, performance, and anti-fouling of polyvinylidene fluoride (PVDF) membrane with cellulose acetate (CA) filler synthesized from screw pine (Pandanus tectorius) leaf cellulose. CA was synthesized by the Fischer esterification mechanism and the PVDF membrane was fabricated using the phase inversion method with 0.3% CA concentration. FTIR analysis of CA shows an absorption at 1700 cm−1 suggesting that the hydroxyl group of cellulose had been successfully substituted with an ester group (C=O), and CA has a high degree of substitution (DS) value of 3.50. Adding CA improved the hydrophilicity and anti-fouling properties of up to 86.45% of PVDF membranes. Furthermore, CA increased the value of water permeability 2–3 times than pristine PVDF membrane. The presence of CA enhanced the porosity of the PVDF membrane, which promoted the membrane's effectiveness for MB filtering. As a result, CA from screw pine leaf cellulose has promising features as a filler for PVDF membranes and potential dye filtration.


Keywords


anti-fouling; cellulose; cellulose acetate; polyvinylidene fluoride; water permeability

Full Text:

Full Text PDF


References

[1] Saxena, P., and Shukla, P., 2021, A comprehensive review on fundamental properties and applications of poly(vinylidene fluoride) (PVDF), Adv. Compos. Hybrid Mater., 4 (1), 8–26.

[2] Ayyaru, S., and Ahn, Y.H., 2017, Application of sulfonic acid group functionalized graphene oxide to improve hydrophilicity, permeability, and antifouling of PVDF nanocomposite ultrafiltration membranes, J. Membr. Sci., 525, 210–219.

[3] Deng, W., and Li, Y., 2021, Novel superhydrophilic antifouling PVDF-BiOCl nanocomposite membranes fabricated via a modified blending-phase inversion method, Sep. Purif. Technol., 254, 117656.

[4] Pramono, E., Zakaria, M.A., Fridiasari, K.F., Ndruru, S.T.C.L., Bagaskara, M., Mustofa, R.E., Sejati, G.P.W., Purnawan, C., and Saputra, O.A., 2022, Cellulose derived from oil palm empty fruit bunches as filler on polyvinylidene fluoride based membrane for water containing humic acid treatment, Groundwater Sustainable Dev., 17, 100744.

[5] Anita Lett, J., Sagadevan, S., Fatimah, I., Hoque, M.E., Lokanathan, Y., Léonard, E., Alshahateet, S.F., Schirhagl, R., and Oh, W.C., 2021, Recent advances in natural polymer-based hydroxyapatite scaffolds: Properties and applications, Eur. Polym. J., 148, 110360.

[6] de Melo Brites, M., Cerón, A.A., Costa, S.M., Oliveira, R.C., Ferraz, H.G., Catalani, L.H., and Costa, S.A., 2020, Bromelain immobilization in cellulose triacetate nanofiber membranes from sugarcane bagasse by electrospinning technique, Enzyme Microb. Technol., 132, 109384.

[7] Afolabi, L.O., Megat-Yusoff, P.S.M., Ariff, Z.M., and Hamizol, M.S., 2019, Fabrication of Pandanus tectorius (screw-pine) natural fiber using vacuum resin infusion for polymer composite application, J. Mater. Res. Technol., 8 (3), 3102–3113.

[8] Suryanti, V., Kusumaningsih, T., Safriyani, D., and Cahyani, I. S., 2023, Synthesis and characterization of cellulose ethers from screw pine (Pandanus tectorius) leaves cellulose as food additives, Int. J. Technol., 14 (3), 291–319.

[9] Zhou, Y., Zhang, X., Cheng, Y., Zhang, J., Mi, Q., Yin, C., Wu, J., and Zhang, J., 2022, Super-rapid and highly-efficient esterification of cellulose to achieve an accurate chromatographic analysis of its molecular weight, Carbohydr. Polym., 286, 119301.

[10] Sun, B., Zhang, M., Shen, J., He, Z., Fatehi, P., and Ni, Y., 2019, Applications of cellulose-based materials in sustained drug delivery systems, Curr. Med. Chem., 26 (14), 2485–2501.

[11] Vatanpour, V., Pasaoglu, M.E., Barzegar, H., Teber, O.O., Kaya, R., Bastug, M., Khataee, A., and Koyuncu, I., 2022, Cellulose acetate in fabrication of polymeric membranes: A review, Chemosphere, 295, 133914.

[12] Mu, C., Su, Y., Sun, M., Chen, W., and Jiang, Z., 2010, Remarkable improvement of the performance of poly(vinylidene fluoride) microfiltration membranes by the additive of cellulose acetate, J. Membr. Sci., 350 (1-2), 293–300.

[13] Nilsson, R., Olsson, M., Westman, G., Matic, A., and Larsson, A., 2022, Screening of hydrogen bonds in modified cellulose acetates with alkyl chain substitutions, Carbohydr. Polym., 285, 119188.

[14] Candido, R.G., Godoy, G.G., and Gonçalves, A.R., 2017, Characterization and application of cellulose acetate synthesized from sugarcane bagasse, Carbohydr. Polym., 167, 280–289.

[15] Gallaher, T., Callmander, M.W., Buerki, S., and Keeley, S.C., 2015, A long distance dispersal hypothesis for the Pandanaceae and the origins of the Pandanus tectorius complex, Mol. Phylogenet. Evol., 83, 20–32.

[16] Mat Piah, M.R.M., Baharum, A., and Abdullah, I., 2016, Mechanical properties of bio-composite natural rubber/high density polyethylene/mengkuang fiber (NRHDE/MK), Polym. Polym. Compos., 24 (9), 767–774.

[17] Trisnawati, E.W., Cahyani, I.S., Safriyani, D., Pramono, E., and Suryanti, V., 2023, Cellulose, cellulose benzoate and cellulose citrate from screw pine (Pandanus tectorius) leaves as PVDF filler for improved permeability and anti-fouling properties, Period. Polytech., Chem. Eng., 67 (3), 504–515.

[18] Silva, M.A., Belmonte-Reche, E., and de Amorim, M.T.P., 2021, Morphology and water flux of produced cellulose acetate membranes reinforced by the design of experiments (DOE), Carbohydr. Polym., 254, 117407.

[19] Guo, H., Peng, Y., Liu, Y., Wang, Z., Hu, J., Liu, J., Ding, Q., and Gu, J., 2020, Development and investigation of novel antifouling cellulose acetate ultrafiltration membrane based on dopamine modification, Int. J. Biol. Macromol., 160, 652–659.

[20] Han, B., Zhang, D., Shao, Z., Kong, L., and Lv, S., 2013, Preparation and characterization of cellulose acetate/carboxymethyl cellulose acetate blend ultrafiltration membranes, Desalination, 311, 80–89.

[21] Radiman, C.L., Widyaningsih, S., and Sugesty, S., 2008, New applications of kenaf (Hibiscus cannabinus L.) as microfiltration membranes, J. Membr. Sci., 315 (1-2), 141–146.

[22] Filho, G.R., da Cruz, S.F., Pasquini, D., Cerqueira, D.A., Prado, V.S., and de Assunção, R.M.N., 2000, Water flux through cellulose triacetate films produced from heterogeneous acetylation of sugar cane bagasse, J. Membr. Sci., 177 (1), 225–231.

[23] Meireles, C.S., Filho, G.R., Fernandes Ferreira, M., Cerqueira, D.A., Assunção, R.M.N., Ribeiro, E.A.M., Poletto, P., and Zeni, M., 2010, Characterization of asymmetric membranes of cellulose acetate from biomass: Newspaper and mango seed, Carbohydr. Polym., 80 (3), 954–961.

[24] Mansourizadeh, A., and Javadi Azad, A., 2014, Preparation of blend polyethersulfone/cellulose acetate/polyethylene glycol asymmetric membranes for oil–water separation, J. Polym. Res., 21 (3), 375.

[25] Moradihamedani, P., and Abdullah, A.H., 2019, Ammonia removal from aquaculture wastewater by high flux and high rejection polysulfone/cellulose acetate blend membrane, Polym. Bull., 76 (5), 2481–2497.

[26] Hossein Razzaghi, M., Safekordi, A., Tavakolmoghadam, M., Rekabdar, F., and Hemmati, M., 2014, Morphological and separation performance study of PVDF/CA blend membranes, J. Membr. Sci., 470, 547–557.

[27] Reza, M., Promono, E., and Radiman, C.L., 2022, Improving separation performance of PVDF ultrafiltration membranes by blending with cellulose acetate, Iran. J. Chem. Chem. Eng., 42 (3), 1017–1029.

[28] Candido, R.G., and Gonçalves, A.R., 2016, Synthesis of cellulose acetate and carboxymethylcellulose from sugarcane straw, Carbohydr. Polym., 152, 679–686.

[29] Adawiyah, R., Suryanti, V., and Pranoto, P., 2022, Preparation and characterization of microcrystalline cellulose from Lembang (Typha angustifolia L.), J. Phys.: Conf. Ser., 2190, 012007.

[30] Pranoto, P., Suryanti, V., and Adawiyah, R., 2023, Andisol and microcrystalline cellulose from Typha angustifolia for auramine O adsorption, Int. J. Adv. Appl. Sci., 12 (1), 27–36.

[31] Goswami, M., and Das, A.M., 2019, Synthesis and characterization of a biodegradable Cellulose acetate-montmorillonite composite for effective adsorption of Eosin Y, Carbohydr. Polym., 206, 863–872.

[32] Andrade Alves, J.A., Lisboa dos Santos, M.D., Morais, C.C., Ramirez Ascheri, J.L., Signini, R., dos Santos, D.M., Cavalcante Bastos, S.M., and Ramirez Ascheri, D.P., 2019, Sorghum straw: Pulping and bleaching process optimization and synthesis of cellulose acetate, Int. J. Biol. Macromol., 135, 877–886.

[33] Araújo, D., Castro, M.C.R., Figueiredo, A., Vilarinho, M., and Machado, A., 2020, Green synthesis of cellulose acetate from corncob: Physicochemical properties and assessment of environmental impacts, J. Cleaner Prod., 260, 120865.

[34] Suhartini, M., Ernawati, E.E., Roshanova, A., Haryono, H., and Mellawati, J., 2020, Cellulose acetate of rice husk blend membranes: Preparation, morphology and application, Indones. J. Chem., 20 (5), 1061–1069.

[35] Mauliana, M., Kurniasih, E., and Syafruddin, S., 2019, Synthesis of acetate cellulose from the palm oil empty floor through the reaction of activation, JSTR, 17 (1), 1–5.

[36] Chuayplod, P., and Aht-Ong, D., 2018, Mechanochemical-assisted heterogeneous surface modification of parawood microcrystalline cellulose and its effect on the properties of polypropylene composites, World J. Eng., 15 (6), 719–730.

[37] Martins, P., Lopes, A.C., and Lanceros-Mendez, S., 2014, Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications, Prog. Polym. Sci., 39 (4), 683–706.

[38] Rahimi Kord Sofla, M., Batchelor, W., Kosinkova, J., Pepper, R., Brown, R., and Rainey, T., 2019, Cellulose nanofibres from bagasse using a high-speed blender and acetylation as a pretreatment, Cellulose, 26 (8), 4799–4814.

[39] Teow, Y.H., Amirudin, S.N., and Ho, K.C., 2020, Sustainable approach to the synthesis of cellulose membrane from oil palm empty fruit bunch for dye wastewater treatment, J. Water Process Eng., 34, 101182.

[40] Sharma, M., Das, P.P., Sood, T., Chakraborty, A., and Purkait, M.K., 2022, Reduced graphene oxide incorporated polyvinylidene fluoride/cellulose acetate proton exchange membrane for energy extraction using microbial fuel cells, J. Electroanal. Chem., 907, 115890.



DOI: https://doi.org/10.22146/ijc.85726

Article Metrics

Abstract views : 922 | views : 524


Copyright (c) 2023 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.