Volatile Organic Compounds and Antioxidant, Cytotoxic Activities of Extracts from the Leaves of Grewia bulot

https://doi.org/10.22146/ijc.84619

Ty Viet Pham(1), Duc Viet Ho(2), Anh Tuan Le(3), Y Duy Ngo(4), Nhan Thi Thanh Dang(5), Thang Quoc Le(6), Bao Chi Nguyen(7*)

(1) Faculty of Chemistry, University of Education, Hue University, 34 Le Loi, Hue City 530000, Vietnam
(2) Faculty of Pharmacy, University of Medicine and Pharmacy, Hue University, 06 Ngo Quyen, Hue City 530000, Vietnam
(3) Mien Trung Institute for Scientific Research, Vietnam National Museum of Nature, VAST, 321 Huynh Thuc Khang Street, Thua Thien Hue 530000, Vietnam
(4) Faculty of Chemistry, University of Education, Hue University, 34 Le Loi, Hue City 530000, Vietnam
(5) Faculty of Chemistry, University of Education, Hue University, 34 Le Loi, Hue City 530000, Vietnam
(6) Faculty of Chemistry, University of Education, Hue University, 34 Le Loi, Hue City 530000, Vietnam
(7) Department of Science, Technology and International Relations, Hue University, 04 Le Loi, Hue City 530000, Vietnam
(*) Corresponding Author

Abstract


This research aims to determine the volatile compounds present in Grewia bulot leaf extracts and evaluate their cytotoxic and antioxidant activities. The volatile constituents of the n-hexane and dichloromethane extracts were identified by using gas chromatography–mass spectrometry. The main compounds identified in the former were neophytadiene (18.2%), methyl palmitate (14.4%), methyl linoleate (9.7%), β-sitosterol (4.5%), and methyl stearate (3.4%), while those in the latter were palmitic acid (9.8%), hexadecane (7.4%), octadecane (6.0%), neophytadiene (5.3%), and 2-tert-butoxyethanol (5.3%). The cytotoxicities of the extracts were examined against four human cancer cell lines (SK-LU-1, Hep-G2, MCF-7, and KB), while their antioxidant activities were assessed using the DPPH radical scavenging assay. The n-hexane and dichloromethane extracts displayed weak activity against these cancer cell lines, with IC50 values ranging from 90.60 ± 3.49 to 98.27 ± 2.77 µg/mL. All extracts showed antioxidant activities, and the methanol extract exhibited the strongest at an SC50 value of 9.39 ± 0.90 µg/mL. This is the first report on the volatile constituents and bioactivities of G. bulot leaf extracts, suggesting their potential application as antioxidants.

Keywords


Grewia bulot; cytotoxic; antioxidant; GC-MS; volatile compound



References

[1] Atanasov, A.G., Zotchev, S.B., Dirsch, V.M., Orhan, I.E., Banach, M., Rollinger, J.M., Barreca, D., Weckwerth, W., Bauer, R., Bayer, E.A., Majeed, M., Bishayee, A., Bochkov, V., Bonn, G.K., Braidy, N., Bucar, F., Cifuentes, A., D’Onofrio, G., Bodkin, M., Diederich, M., Dinkova-Kostova, A.T., Efferth, T., El Bairi, K., Arkells, N., Fan, T.P., Fiebich, B.L., Freissmuth, M., Georgiev, M.I., Gibbons, S., Godfrey, K.M., Gruber, C.W., Heer, J., Huber, L.A., Ibanez, E., Kijjoa, A., Kiss, A.K., Lu, A., Macias, F.A., Miller, M.J.S., Mocan, A., Müller, R., Nicoletti, F., Perry, G., Pittalà, V., Rastrelli, L., Ristow, M., Russo, G.L., Silva, A.S., Schuster, D., Sheridan, H., Skalicka-Woźniak, K., Skaltsounis, L., Sobarzo-Sánchez, E., Bredt, D.S., Stuppner, H., Sureda, A., Tzvetkov, N.T., Vacca, R.A., Aggarwal, B.B., Battino, M,. Giampieri, F., Wink, M., Wolfender, J.L., Xiao, J., Yeung, A.W.K., Lizard, G., Popp, M.A., Heinrich, M., Berindan-Neagoe, I., Stadler, M., Daglia, M., Verpoorte, R., and Supuran, C.T., 2021, Natural products in drug discovery: Advances and opportunities, Nat. Rev. Drug Discovery, 20 (3), 200–216.

[2] Thomford, N.E., Senthebane, D.A., Rowe, A., Munro, D., Seele, P., Maroyi, A., and Dzobo, K., 2018, Natural products for drug discovery in the 21st century: Innovations for novel drug discovery, Int. J. Mol. Sci., 19 (6), 1578.

[3] Dev, R., Kannan, V., Kumar, M.S., Dayal, D., and Patel, R., 2019, “Grewia Species: Diversity, Distribution, Traditional Knowledge and Utilization” in Wild Fruits: Composition, Nutritional Value and Products, Eds. Mariod, A.A., Springer International Publishing, Cham, Switzerland, 395–426.

[4] Sonawane, P.P., and Patil, R.P., 2019, The comparative study of phytoconstituents of genus Grewia from Western Maharashtra, J. Gujarat Res. Soc., 21 (14), 1874–1879.

[5] Shukla, R., Sharma, D.C., Pathak, N., and Bajpai, P., 2016, Estimation of phytochemicals and in vitro antioxidant activity of different solvent extracts of Grewia asiatica fruit, Res. Rev.: J. Bot. Sci., 5 (3), 43–49.

[6] Zahoor, M., Bari, W.U., Zeb, A., and Khan I., 2020, Toxicological, anticholinesterase, antilipidemic, antidiabetic and antioxidant potentials of Grewia optiva Drummond ex Burret extracts, J. Basic. Clin. Physiol. Pharmacol., 31 (2), 1–16.

[7] Ul Bari, W., Zahoor, M., Zeb, A., Sahibzada, M.U.K., Ullah, R., Shahat, A.A., Mahmood, H.M., and Khan, I., 2019, Isolation, pharmacological evaluation and molecular docking studies of bioactive compounds from Grewia optiva, Drug Des., Dev. Ther., 13, 3029–3036.

[8] Akwu, N.A., Naidoo, Y., Singh, M., Nundkumar, N., and Lin, J., 2019, Phytochemical screening, in vitro evaluation of the antimicrobial, antioxidant and cytotoxicity potentials of Grewia lasiocarpa E. Mey. ex Harv., S. Afr. J. Bot., 123, 180–192.

[9] Ma, C., Zhang, H.J., Tan, G.T., Hung, N.V., Cuong, N.M., Soejarto, D.D., and Fong, H.H.S., 2006, Antimalarial compounds from Grewia bilamellata, J. Nat. Prod., 69 (3), 346–350.

[10] Do Jogo, S.F.S., 2019, Antibacterial activity of the chemical constituents of the African medicinal plant Grewia hexamita against resistant bacteria, Dissertation, Faculdade de Farmácia, Universidade de Lisboa.

[11] Nasrin, M., Dash, P.R., and Ali, M.S., 2015, In vitro antibacterial and in vivo cytotoxic activities of Grewia paniculate, Avicenna J. Phytomed., 5 (2), 98–104.

[12] Nyalo, P.O., Omwenga, G.I., and Ngugi, M.P., 2023, Antibacterial properties and GC-MS analysis of ethyl acetate extracts of Xerophyta spekei (Baker) and Grewia tembensis (Fresen), Heliyon, 9 (3), e14461.

[13] Natarajan, A., Sugumar, S., Bitragunta, S., and Balasubramanyan N., 2015, Molecular docking studies of (4Z, 12Z)-cyclopentadeca-4,12-dienone from Grewia hirsuta with some targets related to type 2 diabetes, BMC Complementary Altern. Med., 15 (1), 73.

[14] Rajavel, T., Mohankumar, R., Archunan, G., Ruckmani, K., and Devi, K.P., 2017, Beta sitosterol and daucosterol (phytosterols identified in Grewia tiliaefolia) perturbs cell cycle and induces apoptotic cell death in A549 cells, Sci. Rep., 7 (1), 3418.

[15] Ema, A., Kumar, M.S., Rebecca, L.J., Sindhu, S., Anbarasi, P., Sagadevan, E., and Arumugam, P., 2013, Evaluation of antiproliferative effect of Grewia hirsuta on HepG2 cell lines, J. Acad. Ind. Res., 2, 1–5.

[16] Abirami, N., and Natarajan, B., 2014, Isolation and characterization of (4Z, 12Z)-cyclopentadeca-4,12-dienone from Indian medicinal plant Grewia hirsuta and its hyperglycemic effect on 3T3 and L6 cell lines, Int. J. Pharmacogn. Phytochem. Res., 6(2), 393–398.

[17] Al-Musayeib, N.M., Mothana, R.A., Matheeussen, A., Cos, P., and Maes L., 2012, In vitro antiplasmodial, antileishmanial and antitrypanosomal activities of selected medicinal plants used in the traditional Arabian Peninsular region, BMC Complementary Altern. Med., 12 (1), 49.

[18] Sukdee, S., Meepowpan, P., Nantasaen, N., Jungsuttiwong, S., Hadsadee, S., and Pompimon, W., 2021, Anticancer activities of chemical constituents from leaves and twigs of Mitrephora winitii, Indones. J. Chem., 21 (3), 699–707.

[19] Prasetyaningrum, A., Jos, B., Ratnawati, R., Rokhati, N., Riyanto, T., and Prinanda, G.R., 2022, Sequential microwave-ultrasound assisted extraction of flavonoid from Moringa oleifera: Product characteristic, antioxidant and antibacterial activity, Indones. J. Chem., 22 (2), 303–316.

[20] Benmekhbi, L., Mosbah, S., Laamraoui, H., Hamlaoui, I., Bencheriet, S., and Ibrahim, D., 2022, Evaluation of phytochemical properties and biological activities of leaf extracts and oil of Petroselinum sativum collected from Algeria, Indones. J. Chem., 22 (6), 1566–1573.

[21] Bich, D.H., 2007, Herbal Plants and Animals Used as Medicaments in Vietnam, Vol I, Publishing House for Science and Technology, Hanoi, Vietnam, 472–473.

[22] Ho, P.H., 1999, An Illustrated the Flora of Vietnam, Vol. I. Young Publisher, Ho Chi Minh, Vietnam, 480–486.

[23] Do, H.T.T., Grant, J.C., Trinh, B.N., Zimmer, H.C., and Nichols, J.D., 2017, Diversity depends on scale in the forests of the central highlands of Vietnam, J. Asia-Pac. Biodivers., 10 (4), 472–488.

[24] Pham, T.V., Ngo, H.P.T., Thi Thanh Dang, N., Khoa Nguyen, H., Thi Nhu Hoang, H., and Pham, T., 2022, Volatile constituents and anti-osteoporotic activity of the n-hexane extract from Homalomena gigantea rhizome, Nat. Prod. Commun., 17 (9), 1934578X221125433.

[25] Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J.T., Bokesch, H., Kenney, S., and Boyd, M.R., 1990, New colorimetric cytotoxic assay for anticancer-drug screening, J. Natl. Cancer Inst., 82 (13), 1107–1112.

[26] Hughes, J.P., Rees, S., Kalindjian, S.B., and Philpott, K.L., 2011, Principles of early drug discovery, Br. J. Pharmacol., 162 (6), 1239–1249.

[27] Abramovič, H., Grobin, B., Poklar Ulrih, N., and Cigić, B., 2018, Relevance and standardization of in vitro antioxidant assays: ABTS, DPPH, and Folin–Ciocalteu, J. Chem., 2018, 4608405.

[28] Aboagarib, E.A.A., Yang, R., Hua, X., and Siddeeg, A., 2014, Chemical compositions, nutritional properties and volatile compounds of guddaim (Grewia tenax Forssk.) fiori. fruits, J. Food Nutr. Res., 2 (4), 187–192.

[29] Akwu, N.A., Naidoo, Y., Channangihalli, S.T., Singh, M., Nundkumar, N., and Lin, J., 2021, The essential oils of Grewia lasiocarpa E. Mey. Ex Harv.: Chemical composition, in vitro biological activity and cytotoxic effect on Hela cells, An. Acad. Bras. Cienc., 93 (2), e20190343.

[30] Zia-Ul-Haq, M., Stanković, M.S., Rizwan, K., and Feo, V.D., 2013, Grewia asiatica L., a food plant with multiple uses, Molecules, 18 (3), 2663–2682.

[31] Elements, T., Yabalak, E., and Gizir, A.M., 2017, Evaluation of total polyphenol content, antioxidant activity and chemical composition of methanolic extract from Allium kharputense Freyn Et. Sint. and determination of mineral and trace elements, J. Turk. Chem. Soc., Sect. A, 4 (3), 691–708.

[32] Nadeem, A., Ahmed, B., Shahzad, H., Craker, L.E., and Muntean, T., 2021, Verbascum thapsus (mullein) versatile polarity extracts: GC-MS analysis, phytochemical profiling, anti-bacterial potential and anti-oxidant activity, Pharmacogn. J., 13 (6), 1488–1497.

[33] Han, E.J., Fernando, I.P.S., Kim, H.S., Lee, D.S., Kim, A., Je, J.G., Seo, M.J., Jee, Y.H., Jeon, Y.J., Kim, S.Y., and Ahn, G., 2021, (-)-Loliolide isolated from Sargassum horneri suppressed oxidative stress and inflammation by activating Nrf2/HO-1 signaling in IFN-γ/TNF-α-stimulated HaCaT keratinocytes, Antioxidants, 10 (6), 856.

[34] Santos, C.C.M.P., Salvadori, M.S., Mota, V.G., Costa, L.M., de Almeida, A.A.C., de Oliveira, G.A.L., Costa, J.P., de Sousa, D.P., de Freitas, R.M., and de Almeida, R.N., 2013, Antinociceptive and antioxidant activities of phytol in vivo and in vitro models, Neurosci. J., 2013, 949452.

[35] Grabarczyk, M., Wińska, K., Mączka, W., Potaniec, B., and Anioł, M., 2015, Loliolide - the most ubiquitous lactone, Acta Univ. Lodz., Folia Biol. Oecol., 11, 1–8.

[36] Mendes, A., Azevedo-Silva, J., and Fernandes, J.C., 2022, From sharks to yeasts: Squalene in the development of vaccine adjuvants, Pharmaceuticals, 15 (3), 265.

[37] Zhang, L., Liu, Z., Sun, Y., Wang, X., and Li, L., 2020, Effect of α-tocopherol antioxidant on rheological and physicochemical properties of chitosan/zein edible films, LWT, 118, 198799.

[38] Hegazy, A.K., Mohamed, A.A., Ali, S.I., Alghamdi, N.M., Abdel-Rahman, A.M., and Al-Sobeai, S., 2019, Chemical ingredients and antioxidant activities of underutilized wild fruits, Heliyon, 5 (6), e01874.

[39] Arora, S., 2011, Antibacterial, antifungal, antioxidant and phytochemical study on the leaves extract of Grewia optiva, J. Pharm. Res., 4 (9), 3130–3132.

[40] Suliman, Z.E.A, Zidan, N.S., and Foudah, S.H.I., 2018, Chemical compositions, antioxidant, and nutritional properties of the food products of Guddaim (Grewia tenax), Int. J. Pharm. Res. Allied Sci., 7 (3), 172–182.

[41] Sharma, C., Malgaonkar, M., Sangvikar, S.G., Murthy, S.N., and Pawar, S.D., 2016, In vitro evaluation of antimicrobial and antioxidant profile of Grewia L. root extracts, J. Appl. Life Sci. Int., 7 (1), 1–9.

[42] Islary, A., Sarmah, J., and Basumatary, S., 2016, Proximate composition, mineral content, phytochemical analysis and in vitro antioxidant activities of a wild edible fruit (Grewia sapida Roxb. ex DC.) found in Assam of North-East India, J. Invest. Biochem., 5, 21–31.

[43] Srivastava, J., Kumar, S., and Vankar, P.S., 2012, Correlation of antioxidant activity and phytochemical profile in native plants, Nutr. Food Sci., 42 (2), 71–79.

[44] Salam, R., and Rafe, R., 2018, In vitro antioxidant study and determination of flavonoids, flavonols, total phenolic and proanthocyanidins content of Grewia abutilifolia leaf extracts, Phytothérapie, 18 (3-4), 140–147.



DOI: https://doi.org/10.22146/ijc.84619

Article Metrics

Abstract views : 996 | views : 495 | views : 213


Copyright (c) 2023 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.