Drug-Molecule Adsorption onto Silicon-Doped Fullerene: A Density Functional Theory Study

https://doi.org/10.22146/ijc.84174

Yosephine Novita Apriati(1), Bambang Kristiawan(2), Nikmatul Jannah(3), Ari Dwi Nugraheni(4), Sholihun Sholihun(5*)

(1) Computational Physics Research Group, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(2) Computational Physics Research Group, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(3) Computational Physics Research Group, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(4) Computational Physics Research Group, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(5) Computational Physics Research Group, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(*) Corresponding Author

Abstract


Density functional theory calculations were performed to study the interactions between the host material Si-doped fullerene and the drug molecules paracetamol, a pain and fever reducer, and hydroxyurea, a drug for leukemic treatment. All atoms were relaxed so that the atomic force was less than 5.0 × 10−3 eV/Å. Structural and electronic properties, such as adsorption energy, formation energy, and charge transfer, were calculated. Results showed that Si-doped fullerene had more negative adsorption energy and lower formation energy than undoped fullerene, indicating that drug molecules could be chemisorbed in Si-doped fullerene. These results contribute to the future drug delivery application.


Keywords


fullerene; paracetamol; hydroxyurea; adsorption energy; charge transfer

Full Text:

Full Text PDF


References

[1] Housman, G., Byler, S., Heerboth, S., Lapinska, K., Longacre, M., Snyder, N., and Sarkar, S., 2014, Drug resistance in cancer: An overview, Cancers, 6 (3) 1769–1792.

[2] Duan, Y., Shen, C., Zhang, Y., and Luo, Y., 2022, Advanced diagnostic and therapeutic strategies in nanotechnology for lung cancer, Front. Oncol., 12, 1031000.

[3] Kazemzadeh, H., and Mozafari, M., 2019, Fullerene-based delivery systems, Drug Discovery Today, 24 (3), 298–905.

[4] Sergio, M., Behzadi, H., Otto, A., and van der Spoel, D., 2013, Fullerenes toxicity and electronic properties, Environ. Chem. Lett., 11 (2), 105–118.

[5] Couvreur, P., 2013, Nanoparticles in drug delivery: Past, present and future, Adv. Drug Delivery Rev., 65 (1), 21–23.

[6] Goodarzi, S., Da Ros, T., Conde, J., Sefat, F., and Mozafari, M., 2017, Fullerene: Biomedical-engineers get to revisit an old friend, Mater. Today, 20 (8), 460–480.

[7] Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., and Smalley, R.E., 1985, C60: Buckminsterfullerene, Nature, 318, 162–163.

[8] Felker, P.M., and Bačić, Z., 2020, Flexible water molecule in C60: Intramolecular vibrational frequencies and translation-rotation eigenstates from fully coupled nine-dimensional quantum calculations with small basis sets, J. Chem. Phys., 152 (1), 014108.

[9] Mędrek, M., Pluciński, F.A., and Mazurek, A.P., 2013, Endohedral complexes of fullerene C60 with small covalent molecules (H2O, NH3, H2, 2H2, 3H2, 4H2, O2, O3) in the context of potential drug transporter system, Acta Pol. Pharm., 70 (4), 659–665.

[10] Bashiri, S., Vesally, E., Bekhradnia, A., Hosseinian, A., and Edjlali, L., 2017, Utility of extrinsic [60] fullerenes as work function type sensors for amphetamine drug detection: DFT studies, Vacuum, 136, 156–162.

[11] Moradi, M., Nouraliei, M., and Moradi, R., 2017, Theoretical study on the phenylpropanolamine drug interaction with the pristine, Si and Al doped [60] fullerenes, Phys. E, 87, 186–191.

[12] Parlak, C., and Alver, O., 2017, A density functional theory investigation on amantadine drug interaction with pristine and B, Al, Si, Ga, Ge doped C60 fullerenes, Chem. Phys. Lett., 678, 85–90.

[13] Hazrati, M.K., and Hadipour, N.L., 2016, Adsorption behavior of 5-fluorouracil on pristine, B-, Si-, and Al-doped C60 fullerenes: A first-principles study, Phys. Lett. A, 380 (7-8), 937–941.

[14] Apriati, Y.N., Nugraheni, A.D., and Sholihun, S., 2022, Interaction of C60 with small molecules: Adsorption - inclusion energy calculation using the density functional theory, Mater. Sci. Forum, 1066, 135–143.

[15] Gökpek, Y., Bilge, M., Bilge, D., Alver, Ö., and Parlak, C., 2017, Adsorption mechanism, structural and electronic properties: 4-Phenylpyridine & undoped or doped (B or Si) C60, J. Mol. Liq., 238, 225–228.

[16] Bagheri Novir, S., and Aram, M.R., 2020, Quantum mechanical simulation of Chloroquine drug interaction with C60 fullerene for treatment of COVID-19, Chem. Phys. Lett., 757, 137869.

[17] Bibi, S., Urrehman, S., Khalid, L., Yaseen, M., Khan, A.Q., and Jia, R., 2021, Metal doped fullerene complexes as promising drug delivery materials against COVID-19, Chem. Pap., 75 (12), 6487–6497.

[18] Sholihun, S., Saito, M., Ohno, T., and Yamasaki, T., 2015, Density-functional-theory-based calculations of formation energy and concentration of the silicon monovacancy, Jpn. J. Appl. Phys., 54, 041301.

[19] Umam, K., Sholihun, S., Nurwantoro, P., Ulil Absor, M.A., Nugraheni, A.D., and Budhi, R.H.S, 2018, Biaxial strain effects on the electronic properties of silicene: The density-functional-theory-based calculations, J. Phys.: Conf. Ser., 1011, 012074.

[20] Sholihun, S., Khadarisman, H.P., and Nurwantoro, P., 2018, Density-functional-theory calculations of formation energy of the nitrogen-doped diamond, Indones. J. Chem., 18 (4), 749–754

[21] Yamasaki, T., Kuroda, A., Kato, T., Nara, J., Koga, J., Uda, T., Minami, K., and Ohno, T., 2019, Multi-axis decomposition of density functional program for strong scaling up to 82,944 nodes on the K computer: Compactly folded 3D-FFT communicators in the 6D torus network, Comput. Phys. Commun., 244, 264–276.

[22] Perdew, J.P., Burke, K., and Ernzerhof, M., 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865.

[23] Vuong, B.X., Hajali, N., Asadi, A., Baqer, A.A., Hachim, S.K., and Canli, G., 2022, Drug delivery assessment of an iron-doped fullerene cage towards thiotepa anticancer drug, Inorg. Chem. Commun., 141, 109558.

[24] Bongu, R.S., Bisht, P.B., Namboodiri, R.C.K., Nayak, P., Ramaprabhu, S., Kelly, T.J., Fallon, C., and Costello, J.T., 2014, Influence of localized surface plasmons on Pauli blocking and optical limiting in graphene under femtosecond pumping, J. Appl. Phys., 116 (2), 073101.

[25] Yang, Y., Arias, F., Echegoyen, L., Chibante, L.P.F., Flanagan, S., Robertson, A., and Wilson, L.J., 1995, Reversible fullerene electrochemistry: Correlation with the HOMO-LUMO energy difference for C60, C70, C76, C78, and C84, J. Am. Chem. Soc., 117 (29), 7801–7804.

[26] Ren, S.L., Wang, Y., Rao, A., McRae, E., Holden, J.M., Hager, T., Wang, K.A., Lee, W.T., Ni, H.F., Selegue, J., and Eklund, P.C., 1991, Ellipsometric determination of the optical constants of C60 (Buckminsterfullerene) films, Appl. Phys. Lett., 59 (21), 2678–2680.

[27] Parr, R.G., Szentpály, L.V., and Liu, S., 1999, Electrophilicity index, J. Am. Chem. Soc., 121 (9), 1922–1924.

[28] Maynard, A.T., Huang, M., Rice, W.G., and Covell, D.G., 1998, Reactivity of the HIV-1 nucleocapsid protein p7 zinc finger domains from the perspective of density-functional theory, Proc. Natl. Acad. Sci. U. S. A., 95 (20), 11578–11583.

[29] Padmanabhan, J., Parthasarathi, R., Subramanian, V., and Chattaraj, P.K., 2007, Electrophilicity based charge transfer descriptor, J. Phys. Chem. A, 111 (7), 1358–1361.

[30] Momma, K., and Izumi, F., 2011, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr., 44, 1272–1276.

[31] Al Fauzan, M.F., Satya, T.P., Setyawan, G., Fahrurrozi, I., Puspasari, F., Partini, J., and Sholihun, S., 2021, Adsorption of toxic heavy metal methylmercury (MeHg) on germanene in aqueous environment: A first-principles study, Indones. J. Chem., 21 (6), 1484–1490.

[32] Al-Fauzan, M.R., Astuti, W.D., Al-Fauzan, G., and Sholihun, S., 2018, A first-principles investigation of the adsorption of CO and NO molecules on germanene, IOP Conf. Ser.: Mater. Sci. Eng., 367, 012051.

[33] Jmol Development Team, 2016, Jmol: An open-source Java viewer for chemical structures in 3D, http://jmol.org/.

[34] Vatanparast, M., and Shariatinia, Z., 2019, Hexagonal boron nitride nanosheet as novel drug delivery system for anticancer drugs: Insights from DFT calculations and molecular dynamics simulations, J. Mol. Graphics Modell., 89, 50–59.

[35] Xu, H., Tu, X., Fan, G., Wang, Q., Wang, X., and Chu, X., 2020, Adsorption properties study of boron nitride fullerene for the application as smart drug delivery agent of anti-cancer drug hydroxyurea by density functional theory, J. Mol. Liq., 318, 114315.

[36] Li, M., Wei, Y., Zhang, G., Wang, F., Li, M., and Soleymanabadi, H., 2020, A DFT study on the detection of isoniazid drug by pristine, Si and Al doped C70 fullerenes, Phys. E, 118, 113878.

[37] Rahman, H., Hossain, M.R., and Ferdous, T., 2020, The recent advancement of low-dimensional nanostructured materials for drug delivery and drug sensing application: A brief review, J. Mol. Liq., 320, 114427.



DOI: https://doi.org/10.22146/ijc.84174

Article Metrics

Abstract views : 1308 | views : 797


Copyright (c) 2023 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.