Cytotoxic Dammarane-Type Triterpenoids from Aglaia cucullata Peel Fruit

https://doi.org/10.22146/ijc.83694

Intan Hawina Anjari(1), Desi Harneti(2), Kindi Farabi(3), Al Arofatus Naini(4), Ace Tatang Hidayat(5), Risyandi Anwar(6), Hadi Kuncoro(7), Mohamad Nurul Azmi(8), Unang Supratman(9*)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia; Central Laboratory of Universitas Padjadjaran, Jl. Raya Bandung-Sumedang, Km. 21, Jatinangor, Sumedang 45363, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia; Central Laboratory of Universitas Padjadjaran, Jl. Raya Bandung-Sumedang, Km. 21, Jatinangor, Sumedang 45363, Indonesia
(6) Herbal Medicine Research, Department of Paediatric Dentistry, Faculty of Dental Medicine, University of Muhammadiyah Semarang, Semarang 50272, Indonesia
(7) Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75123, Indonesia
(8) School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
(9) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia; Central Laboratory of Universitas Padjadjaran, Jl. Raya Bandung-Sumedang, Km. 21, Jatinangor, Sumedang 45363, Indonesia
(*) Corresponding Author

Abstract


Four triterpenoids, known as dammarane-type, dammaradienone (1), 20(S),25-epoxy-5α-dammar-20-en-3-one (2), 20(S)-5α-dammar-24-en-3α,20-diol-3-acetate (3) and 3α-acetyl-20S,24S-epoxy-25-hydroxydammarane (4), were isolated from Aglaia cucullata peel fruit. The structures of isolated compounds were identified based on their HR-TOFMS data and extensive NMR spectroscopic analysis, as well as compared with literature data. Compounds 1-4 were assessed for cytotoxic effects against HeLa cervical and B16-F10 melanoma skin cancer cells. All compounds showed moderate to weak activity against B16-F10 cancer cells, while compound 2 exhibited the strongest activity against HeLa cancer cells with IC50 of 7.10 µg/mL indicating that the existence of an epoxy moiety at the side chain increases the cytotoxicity to HeLa cells.


Keywords


Aglaia cucullate; B16-F10; dammarane-type; cytotoxic activity; HeLa



References

[1] Noushahi, H.A., Khan, A.H., Noushahi, U.F., Hussain, M., Javed, T., Zafar, M., Batool, M., Ahmed, U., Liu, K., Harrison, M.T., Saud, S., Fahad, S., and Shu, S., 2022, Biosynthetic pathways of triterpenoids and strategies to improve their biosynthetic efficiency, Plant Growth Regul., 97 (3), 439–454.

[2] Hill, R.A., and Connolly, J.D., 2020, Triterpenoids, Nat. Prod. Rep., 37 (7), 962–998.

[3] Hidayat, A.T., Farabi, K., Harneti, D., Nurlelasari, N., Maharani, R., Nurfarida, I., Supratman, U., and Shiono, Y., 2018, Cytotoxic triterpenoids from the stembark of Aglaia argentea (Meliaceae), Indones. J. Chem., 18 (1), 35–42.

[4] Bhandari, P., Sendri, N., and Devidas, S.B., 2020, Dammarane triterpenoid glycosides in Bacopa monnieri: A review on chemical diversity and bioactivity, Phytochemistry, 172, 112276.

[5] Ha, T.K.Q., Pham, H.T.T., Cho, H.M., Tran, V.O., Yang, J.L., Jung, D.W., Williams, D.R., and Oh, W.K., 2019, 12,23-Dione dammarane triterpenes from Gynostemma longipes and their muscle cell proliferation activities via activation of the AMPK pathway, Sci. Rep., 9 (1), 1186.

[6] Mzondo, B., Dlamini, N., Malan, F.P., Labuschagne, P., Bovilla, V.R., Madhunapantula, S.V., and Maharaj, V., 2021, Dammarane-type triterpenoids with anti-cancer activity from the leaves of Cleome gynandra, Phytochem. Lett., 43, 16–22.

[7] Ye, M., Xu, W., He, D.Q., Wu, X., Lai, W.F., Zhang, X.Q., Lin, Y., Xu, W., and Li, X.W., 2020, Dammarane-type triterpenoids from the roots of Rhus chinensis and their preventive effects on zebrafish heart failure and thrombosis, J. Nat. Prod., 83 (2), 362–373.

[8] Lou, Y.Y., Zheng, X., Huang, Y.P., Mu, L., Zhang, X.G., Zhao, Z.W., Song, Z., Zhang, J., Yin, Z.Q., and Pan, K., 2021, New dammarane-type triterpenoid saponins from Gynostemma pentaphyllum and their Sirt1 agonist activity, Bioorg. Chem., 116, 105357.

[9] Cao, J., Zhang, X., Qu, F., Guo, Z., and Zhao, Y., 2015, Dammarane triterpenoids for pharmaceutical use: A patent review (2005-2014), Expert Opin. Ther. Pat., 25 (7), 805–817.

[10] Harneti, D., and Supratman, U., 2021, Phytochemistry and biological activities of Aglaia species, Phytochemistry, 181, 112540.

[11] Liu, Y., Yang, Y., Wang, H., Li, H., Lv, Q., Wang, X., Wu, D., Hu, L., and Zhang, Y., 2023, Dammarane-type triterpenoid saponins isolated from Gynostemma pentaphyllum ameliorate liver fibrosis via agonizing PP2Cα and inhibiting deposition of extracellular matrix, Chin. J. Nat. Med., 21 (8), 599–609.

[12] Pan, L., Woodard, J.L., Lucas, D.M., Fuchs, J.R., and Kinghorn, A.D., 2014, Rocaglamide, silvestrol and structurally related bioactive compounds from Aglaia species, Nat. Prod. Rep., 31 (7), 924–939.

[13] An, F.L., Wang, X.B., Wang, H., Li, Z.R., Yang, M.H., Luo, J., and Kong, L.Y., 2016, Cytotoxic rocaglate derivatives from leaves of Aglaia perviridis, Sci. Rep., 6 (1), 20045.

[14] Sianturi, J., Harneti, D., Darwati, D., Mayanti, T., Supratman, U., and Awang, K., 2016, A new (–)-5′,6-dimethoxyisolariciresinol-(3″,4″-dimethoxy)-3α-O-β-D-glucopyranoside from the bark of Aglaia eximia (Meliaceae), Nat. Prod. Res., 30 (19), 2204–2208.

[15] Pervin, R., Afrin, S., Sabrin, F., Zohora, U.S., Rahman, M.S., Islam, K.D., and Billah, M.M., 2016, Antioxidant, antibacterial and brine shrimp lethality bioassay of Amoora cucullata, a mangrove plant, J. Young Pharm., 8 (1), 33–38.

[16] Hidayat, A.T., Farabi, K., Harneti, D., Maharani, R., Darwati, D., Nurlelasari, N., Mayanti, T., Setiawan, A.S., Supratman, U., and Shiono, Y., 2017, Cytotoxicity and structure activity relationship of dammarane-type triterpenoids from the bark of Aglaia elliptica against P-388 murine leukemia cells, Nat. Prod. Sci., 23 (4), 291–298.

[17] Zhang, F., Chen, Y., Zhu, Y., Li, Q., and Cen, J., 2016, A new triterpeniod from Aglaia perviridis, Chem. Nat. Compd., 52 (3), 427–431.

[18] Huang, P.Q., Deng, J.W., Li, Y., Liao, Z.B., Zhao, E., Tian, Y.C., Tu, Y.D., Li, D.L., Jin, J.W., Zhou, C.X., Wu, R.H., and Gan, L.S., 2022, Terpenoids from the twigs and leaves of Aglaia elaeagnoidea and their chemotaxonomic significance, Biochem. Syst. Ecol., 103, 104427.

[19] Heads, M., 2019, Biogeography and ecology in a pantropical family, the Meliaceae, Gard. Bull. Singapore, 71 (Suppl. 2), 335–461.

[20] Abdelfattah, M.S., Toume, K., Ahmed, F., Sadhu, S.K., and Ishibashi, M., 2010, Cucullamide, a new putrescine bisamide from Amoora cucullata, Chem. Pharm. Bull., 58 (8), 1116–1118.

[21] Ahmed, F., Toume, K., Sadhu, S.K., Ohtsuki, T., Arai, M.A., and Ishibashi, M., 2010, Constituents of Amoora cucullata with TRAIL resistance-overcoming activity, Org. Biomol. Chem., 8 (16), 3696–3703.

[22] Chumkaew, P., Kato, S., and Chantrapromma, K., 2006, Potent cytotoxic rocaglamide derivatives from the fruits of Amoora cucullata, Chem. Pharm. Bull., 54 (9), 1344–1346.

[23] Chumkaew, P., Teerapongpisan, P., Pechwang, J., and Srisawat, T., 2019, New oxoprotoberberine and aporphine alkaloids from the roots of Amoora cucullata with their antiproliferative activites, Rec. Nat. Prod., 13 (6), 491–498.

[24] Xu, M., Mccanna, D.J., and Sivak, J.G., 2015Use of the viability reagent PrestoBlue in comparison with alamarBlue and MTT to assess the viability of human corneal epithelial cells, J. Pharmacol. Toxicol. Methods, 71, 1–7.

[25] Purnama, P., Farabi, K., Runadi, D., Kuncoro, H., Harneti, D., Nurlelasari, N., Mayanti, T., Azmi, M.N., Fajriah, S., and Supratman, U., 2023, The cytotoxic activity of dammarane-type triterpenoids isolated from the stem bark of Aglaia cucullata (Meliaceae), Molecules, 28 (13), 4946.

[26] Yodsaoue, O., Sonprasit, J., Karalai, C., Ponglimanont, C., Tewtrakul, S., and Chantrapromma, S., 2012, Diterpenoids and triterpenoids with potential anti-inflammatory activity from the leaves of Aglaia odorata, Phytochemistry, 76, 83–91.

[27] Dekebo, A., Dagne, E., Curry, P., Gautun, O.R., and Aasen, A.J., 2002, Dammarane triterpenes from the resins of Commiphora confuse, Bull. Chem. Soc. Ethiop., 16 (1), 81–86.

[28] Hisham, A., Ajitha Bai, M.D., Fujimoto, Y., Hara, N., and Shimada, H., 1996, Complete 1H and I3C NMR spectral assignment of cabraleadiol, a dammarane triterpene from Dysoxylum malabaricum Bedd, Magn. Reason. Chem., 34 (2), 146–150.

[29] Csepregi, R., Lemli, B., Kunsági-Máté, S., Szente, L., Koszegi, T., Németi, B., and Poór, M., 2018, Complex formation of resorufin and resazurin with B-cyclodextrins: Can cyclodextrins interfere with a resazurin cell viability assay, Molecules, 23 (2), 382.



DOI: https://doi.org/10.22146/ijc.83694

Article Metrics

Abstract views : 1881 | views : 853 | views : 399


Copyright (c) 2024 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.