Activated Charcoal from Coffee Dregs Waste as an Alternative Biosorbent of Cu(II) and Ag(I)

Susy Yunita Prabawati(1*), Priyagung Dhemi Widiakongko(2), Mohammad Ahsani Taqwim(3)

(1) Chemistry Program Study, Faculty of Science and Technology, UIN Sunan Kalijaga, Jl. Laksda Adisucipto, Yogyakarta 55281, Indonesia
(2) Chemistry Program Study, Faculty of Science and Technology, UIN Sunan Kalijaga, Jl. Laksda Adisucipto, Yogyakarta 55281, Indonesia
(3) Chemistry Program Study, Faculty of Science and Technology, UIN Sunan Kalijaga, Jl. Laksda Adisucipto, Yogyakarta 55281, Indonesia
(*) Corresponding Author


This study examines the use of coffee dregs waste as biosorbents of Cu(II) and Ag(I). Coffee dregs waste still contains a high level of carbon and cellulose for biosorbents production. The production process was started with charcoal activation using H3PO4. The batch method was applied by variations of contact time, the mass of the biosorbent, and the initial concentration of metal ions. The results showed that Cu(II) and Ag(I) were optimally adsorbed at pH 6 and 4, respectively. The amount of adsorbed metal ions increased with adsorption contact time. The adsorption process of both metal ions reaches stability within 60 min and the optimum biosorbent mass is 1 g. Isothermal adsorption studies show that Cu(II) adsorption tends to follow Langmuir isotherm with an adsorption energy of 31.42 kJ/mol and Ag(I) adsorption follows Freundlich isotherms with an adsorption energy of 27.74 kJ/mol. Based on the results, the interaction between metal ions and adsorbents is a chemical adsorption process and coffee dregs charcoal has the potential to adsorb Cu(II) and Ag(I) metal ions.


Ag(I); biosorbent; coffee dregs; Cu(II); isothermal adsorption

Full Text:

Full Text PDF


[1] Hernawati, T., and Ilcham, A., 2022, Heavy Metal Reducing from Kotagede Silver Handicraft Waste Using Natural Zeolite and Synthetic Zeolite, The 1st International Conference on Engineering Optimization and Management in Industrial Applications, Yogyakarta, Indonesia, October 29th, 2022.

[2] Aprilita, N.H., Luqman, M., and Suratman, A., 2022, Dithizone-immobilized nickel slag for the adsorption of silver(I) ion, Rasayan J. Chem., 15 (2), 1071–1079.

[3] Siddiquee, S., Rovina, K., Al Azad, S., Naher, L., Suryani, S., and Chaikaew, P., 2015, Heavy metal contaminants removal from wastewater using the potential filamentous fungi biomass: A review, J. Microb. Biochem. Technol., 7 (6), 384–393.

[4] Al-Senani, G.M., and Al-Fawzan, F.F., 2018, Adsorption study of heavy metal ions from aqueous solution by nanoparticle of wild herbs, Egypt. J. Aquat. Res., 44 (3), 187–194

[5] Ministry of Environment and Forestry Republic of Indonesia, 2014, Peraturan Menteri Lingkungan Hidup tentang Baku Mutu Air Limbah,

[6] Prabawati, S.Y., Jumina, J., Santosa, S.J., Mustofa, M., and Keisuke, O., 2012, Study on the adsorption properties of novel calix[6]arene polymers for heavy metal cations, Indones. J. Chem., 12 (1), 28–34.

[7] Sellaoui, L., Ali, J., Badawi, M., Bonilla-Petriciolet, A., and Chen, Z., 2020, Understanding the adsorption mechanism of Ag+ and Hg2+ on functionalized layered double hydroxide via statistical physics modeling, Appl. Clay Sci., 198, 105828.

[8] Feng, X., Long, R., Wang, L., Liu, C., Bai, Z., and Liu, X., 2022, A review on heavy metal ions adsorption from water by layered double hydroxide and its composites, Sep. Purif. Technol., 284, 120099.

[9] Nádaždy, V., Gmucová, K., Poturnayová, A., Šnejdárková, M., Karpišová, I., Lányi, Š., and Hianik, T., 2012, Detection of cytochrome c with calixarenes incorporated into supported lipid membranes via charge transient measurements, Procedia Chem., 6, 60–68.

[10] Bhati, A., Anand, S.R., Saini, D., Gunture, G., and Sonkar, S.K., 2019, Sunlight-induced photoreduction of Cr(VI) to Cr(III) in wastewater by nitrogen-phosphorus-doped carbon dots, npj Clean Water, 2 (1), 12.

[11] Bugajski, P., Nowobilska-Majewska, E., and Majewski, M., 2021, The impact of atmospheric precipitation on wastewater volume flowing into the wastewater treatment plant in Nowy Targ (Poland) in terms of treatment costs, Energies, 14 (13), 3806.

[12] Vecino, X., and Reig, M., 2022, Wastewater treatment by adsorption and/or ion-exchange processes for resource recovery, Water, 14 (6), 911.

[13] Manousi, N., Giannakoudakis, D.A., Rosenberg, E., and Zachariadis, G.A., 2019, Extraction of metal ions with metal-organic frameworks, Molecules, 24 (24), 4605.

[14] Aprilita, N.H., Luqman, M., and Suratman, A., 2023, Removal of cobalt(II) by dithizone-immobilized nickel slag, Results Chem., 5, 100698.

[15] Kubra, K.T., Hasan, M.M., Hasan, M.N., Salman, M.S., Khaleque, M.A., Sheikh, M.C., Rehan, A.I., Rasee, A.I., Waliullah, R.M., Awual., M.E., Hossain, M.S., Alsukaibi, A.K.D., Alshammari, H.M., and Awual, M.R., 2023, The heavy lanthanide of Thulium(III) separation and recovery using specific ligand-based facial composite adsorbent, Colloids Surf., A, 667, 131415.

[16] Awual, M.R., Hasan, M.N., Hasan, M.M., Salman, M.S., Sheikh, M.C., Kubra, K.T., Islam, M.S., Marwani, H.M., Islam, A., Khaleque, M.A., Waliullah, R.M., Hossain, M.S., Rasee, A.I., Rehan, A.I., and Awual, E., 2023, Green and robust adsorption and recovery of Europium(III) with a mechanism using hybrid donor conjugate materials, Sep. Purif. Technol., 319, 124088.

[17] Salman, M.S., Sheikh, M.C., Hasan, M.M., Hasan, M.N., Kubra, K.T., Rehan, A.I., Awual, M.E., Rasee, A.I., Waliullah, R.M., Hossain, M.S., Khaleque, M.A., Alsukaibi, A.K.D., Alshammari, H.M., and Awual, M.R., 2023, Chitosan-coated cotton fiber composite for efficient toxic dye encapsulation from aqueous media, Appl. Surf. Sci., 622, 157008.

[18] Figueroa Campos, G.A., Perez, J.P.H., Block, I., Sagu, S.T., Saravia Celis, P., Taubert, A., and Rawel, H.M., 2021, Preparation of activated carbons from spent coffee grounds and coffee parchment and assessment of their adsorbent efficiency, Processes, 9, 1396.

[19] Forcina, A., Petrillo, A., Travaglioni, M., di Chiara, S., and De Felice, F., 2023, A comparative life cycle assessment of different spent coffee ground reuse strategies and a sensitivity analysis for verifying the environmental convenience based on the location of sites, J. Cleaner Prod., 385, 135727.

[20] Caetano, N.S., Silva, V.F.M., and Mata, T.M., 2012, Valorization of coffee dregs for biodiesel production, Chem. Eng. Trans., 26, 267–272.

[21] Nipa, S.T., Shefa, N.R., Parfin, S., Khatun, M.A., Alam, M.J., Chodhury, S., Khan, M.A., Shawon, S., Biswas, B.K., and Rahman, M.W., 2023, Adsorption of methylene blue on papaya bark fiber: Equilibrium, isotherm and kinetic perspectives, Results Eng., 17, 100857.

[22] Mariana, M., Marwan, M., Mulana, F., Yunardi, Y., Ismail, T.A., and Hafdiansyah, M.F., 2018, Activation and characterization of waste coffee grounds as bio-sorbent, IOP Conf. Ser.: Mater. Sci. Eng., 334, 012029.

[23] Esterlita, M.O., and Herlina, N., 2015, Pengaruh penambahan aktivator ZnCl2, KOH dan H3PO4 dalam pembuatan karbon aktif dari pelepah aren (Arenga pinnata), Jurnal Teknik Kimia USU, 4 (1), 47–52.

[24] Rampe, M.J., and Tiwow, V.A., 2018, Fabrication and characterization of activated carbon from charcoal coconut shell Minahasa, Indonesia, J. Phys.: Conf. Ser., 1028, 012033.

[25] Skoog, D.A., Holler, F.J., and Crouch, S.R., 2017, Principles of Instrumental Analysis, 7th Ed., Cengage Learning, Boston, US.

[26] Purwiandono, G., and Ibrahim, S., 2022, Adsorpsi logam Cu(II) menggunakan adsorben kulit buah salak teraktivasi HNO3, IJCR, 7 (1), 1–7.

[27] Mukhlis, M., Salim, I., and Krimadi, L.N., 2022, Karakteristik Karbon aktif ampas kopi dan kemampuannya terhadap perbaikan parameter kimia air sumur Koya Barat, AVOGADRO Jurnal Kimia, 6 (1), 28–39.

[28] El-Wakil, A.M., Abou El-Maaty, W.M., and Awad, F.S., 2014, Removal of lead from aqueous solution on activated carbon and modified activated carbon prepared from dried water hyacinth plant, J. Anal. Bioanal. Tech., 5 (2), 000187.

[29] Huang, Y., Li, S., Chen, J., Zhang, X., and Chen, Y., 2014, Adsorption of Pb(II) on mesoporous activated carbons fabricated from water hyacinth using H3PO4 activation: Adsorption capacity, kinetic and isotherm studies, Appl. Surf. Sci., 293, 160–168.

[30] Iftekhar, S., Ramasamy, D.K., Srivastava, V., Asif, M.B., and Sillanpää, M., 2018, Understanding the factors affecting the adsorption of Lanthanum using different adsorbents: A critical review, Chemosphere, 204, 413–430.

[31] Sudiarta, I.W., Suarya, P., and Widya, C.M.P., 2018, Adsorpsi multi logam berat krom(III), timbal(II) dan tembaga(II) dalam sistem larutan binary oleh silika gel terimobilisasi difenilkarbazida, Jurnal Kimia, 12 (2), 159–164.

[32] Awual, M.R., 2019, Novel ligand functionalized composite material for efficient copper(II) capturing from wastewater sample, Composites, Part B, 172, 387–396.

[33] Kim, M.S., and Kim, J.G., 2020, Adsorption characteristics of spent coffee dregs as an alternative adsorbent for cadmium in solution, Environments, 7 (4), 24.

[34] Kosim, M.E., Siskayanti, R., Prambudi, D., and Rusanti, W.D., 2022, Perbandingan kapasitas adsorpsi karbon aktif dari kulit singkong dengan karbon aktif komersil terhadap logam tembaga dalam limbah cair electroplating, Jurnal Redoks, 7 (1), 36–47.

[35] Wang, M., Li, G., Huang, L., Xue, J., Liu, Q., Bao, N., and Huang, J., 2017, Study of ciprofloxacin adsorption and regeneration of activated carbon prepared from Enteromorpha prolifera impregnated with H3PO4 and sodium benzenesulfonate, Ecotoxicol. Environ. Saf., 139, 36–42.


Article Metrics

Abstract views : 969 | views : 537

Copyright (c) 2023 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.