Hollow Fiber Hemodialysis Imprinted Membrane Based on Eugenol for Human Blood Filter

https://doi.org/10.22146/ijc.83065

Muhammad Cholid Djunaidi(1*), Nesti Dwi Maharani(2), Pardoyo Pardoyo(3), Yanuardi Raharjo(4)

(1) Department of Chemistry, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Soedharto SH, Tembalang, Semarang 50275, Indonesia
(2) Department of Chemistry, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Soedharto SH, Tembalang, Semarang 50275, Indonesia
(3) Department of Chemistry, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Soedharto SH, Tembalang, Semarang 50275, Indonesia
(4) Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya 60115, Indonesia
(*) Corresponding Author

Abstract


Kidney failure is a kidney function disorder that occurs in more than 90.00% of people in the world, especially in developing countries. In 2013, around 12.50% of the 25 million population experienced kidney failure and 78.00% had to undergo dialysis for life. In this research, a hemodialysis method was developed, namely molecularly imprinted membrane (MIM), which has high selectivity for urea molecules with high binding capacity using a membrane in the form of hollow fiber. Variations in research use urea transport concentrations such as 50, 200, and 300 ppm. The analysis using UV-vis spectrophotometry on HFHIM with a solution mixture of 50 ppm showed that the receiving phase by the membrane was 70.48% urea, 12.97% creatinine, and 9.42% vitamin B12. Meanwhile, the feed phase is 28.25% urea, 85.41% creatinine and 88.64% vitamin B12. When using HFHNIM, the receiving phase is urea 44.78%, creatinine 58.51%, and vitamin B12 31.00%. Meanwhile, the feed phase is 54.55% urea, 40.57% creatinine, 68.29% vitamin B12. The selectivity of HFHIM for urea is better than creatinine and vitamin B12 compared to HFHNIM, in the order of selectivity urea > creatinine > vitamin B12.


Keywords


polyeugenol; imprinted; hollow fiber; hemodialysis



References

[1] Kalantar-Zadeh, K., Jafar, T.H., Nitsch, D., Neuen, B.L., and Perkovic, V., 2021, Chronic kidney disease, Lancet, 398 (10302), 786–802.

[2] Yamada, S., and Inaba, M., 2021, Potassium metabolism and management in patients with CKD, Nutrients, 13 (6), 1751.

[3] Hansen‐Estruch, C., Cooper, D.K., and Judd, E., 2022, Physiological aspects of pig kidney xenotransplantation and implications for management following transplant, Xenotransplantation, 29 (3), e12743.

[4] Bays, H.E., Taub, P.R., Epstein, E., Michos, E.D., Ferraro, R.A., Bailey, A.L., Kelli, H.M., Ferdinand, K.C., Echols, M.R., Weintraub, H., Bostrom, J., Johnson, H.M., Hoppe, K.K., Shapiro, M.D., German, C.A., Virani, S.S., Hussain, A., Ballantyne, C.M., Agha, A.M., and Toth, P.P., 2021, Ten things to know about ten cardiovascular disease risk factors, Am. J. Prev. Cardiol., 5, 100149.

[5] Zaman, S.U., Rafiq, S., Ali, A., Mehdi, M.S., Arshad, A., Rehman, S., Muhammad, N., Irfan, M., Khurram, M.S., Zaman, M.K.U., Hanbazazah, A.S., Lim, H.R., and Show, P.L., 2022, Recent advancement challenges with synthesis of biocompatible hemodialysis membranes, Chemosphere, 307, 135626.

[6] Said, N., Lau, W.J., Ho, Y.C., Lim, S.K., Zainol Abidin, M.N., and Ismail, A.F., 2021, A review of commercial developments and recent laboratory research of dialyzers and membranes for hemodialysis application, Membranes, 11 (10), 767.

[7] Bolton, S., Gair, R., Nilsson, L.G., Matthews, M., Stewart, L., and McCullagh, N., 2021, Clinical assessment of dialysis recovery time and symptom burden: Impact of switching hemodialysis therapy mode, Patient Relat. Outcome Meas., 12, 315–321.

[8] Yang, H., Liu, H.B., Tang, Z.S., Qiu, Z.D., Zhu, H.X., Song, Z.X., and Jia, A.L., 2021, Synthesis, performance, and application of molecularly imprinted membranes: A review, J. Environ. Chem. Eng., 9 (6), 106352.

[9] Donato, L., Nasser, I.I., Majdoub, M., and Drioli, E., 2022, Green chemistry and molecularly imprinted membranes, Membranes, 12 (5), 472.

[10] El Hani, O., García-Guzmán, J.J., Palacios-Santander, J.M., Digua, K., Amine, A., and Cubillana-Aguilera, L., 2024, Development of a molecularly imprinted membrane for selective, high-sensitive, and on-site detection of antibiotics in waters and drugs: Application for sulfamethoxazole, Chemosphere, 350, 141039.

[11] Ahmed, J., Rashed, M.A., Faisal, M., Harraz, F.A., Jalalah, M., and Alsareii, S., 2021, Novel SWCNTs-mesoporous silicon nanocomposite as efficient non-enzymatic glucose biosensor, Appl. Surf. Sci., 552, 149477.

[12] Ahirrao, V., Jadhav, R., More, K., Kale, R., Rane, V., Kilbile, J., Rafeeq, M., and Yeole, R., 2022, An accurate and precise analytical method for estimation of active sulfur trioxide and sulfuric acid in triethylamine sulfur trioxide complex, Asian J. Pharm. Anal., 12 (1), 17–22.

[13] Raharjo, Y., Ismail, A.F., Othman, M.H.D., Rosid, S.M., Azali, M.A., and Santoso, D., 2021, Effect of polymer loading on membrane properties and uremic toxins removal for hemodialysis application, J. Membr. Sci. Res., 7 (1), 14–19.

[14] Raharjo, Y., 2020, Polyethersulfone Mixed Matrix Membrane Containing Imprinted Zeolite for Cresol Removal in Hemodialysis Application, Dissertation, Universiti Teknologi Malaysia, Malaysia.

[15] Abdou, A., Elmakssoudi, A., El Amrani, A., JamalEddine, J., and Dakir, M., 2021, Recent advances in chemical reactivity and biological activities of eugenol derivatives, Med. Chem. Res., 30 (5), 1011–1030.

[16] Djunaidi, M.C., Dwi Maharani, N., Gunawan, G., and Khasanah, M., 2023, Eugenol-based molecular imprinted membrane synthesis as a glucose sensor in honey, Mater. Today: Proc., 80, 1195–1204.

[17] Djunaidi, M.C., Prasetya, N.B.A., Khoiriyah, A., Pardoyo, P., Haris, A., and Febriola, N.A., 2020, Polysulfone influence on Au selective adsorbent imprinted membrane synthesis with sulfonated polyeugenol as functional polymer, Membranes, 10 (12), 390.

[18] Djunaidi, M.C., Febriola, N.A., and Haris, A., 2021, Molecularly imprinted membrane for transport of urea, creatinine, and vitamin B12 as a hemodialysis candidate membrane, Open Chem., 19 (1), 806–817.

[19] Khajavian, M., Vatanpour, V., Castro-Muñoz, R., and Boczkaj, G., 2022, Chitin and derivative chitosan-based structures — Preparation strategies aided by deep eutectic solvents: A review, Carbohydr. Polym., 275, 118702.

[20] Chen, J., Peng, Q., Peng, X., Zhang, H., and Zeng, H., 2022. Probing and manipulating noncovalent interactions in functional polymeric systems, Chem. Rev., 122 (18), 14594–14678.

[21] Si, P., and Zhao, B., 2021, Water‐based polyurethanes for sustainable advanced manufacture, Can. J. Chem. Eng., 99 (9), 1851–1869.

[22] Nam, S., and Mooney, D., 2021, Polymeric tissue adhesives, Chem. Rev., 121 (18), 11336–11384.

[23] Maggay, I.V., Yu, M.L., Wang, D.M., Chiang, C.H., Chang, Y., and Venault, A., 2022, Strategy to prepare skin-free and macrovoid-free polysulfone membranes via the NIPS process, J. Membr. Sci., 655, 120597.

[24] Ramanuj, V., Sankaran, R., Malenica, L., Cole, K., Day, M., and McCutcheon, J., 2022, Macrovoid resolved simulations of transport through HPRO relevant membrane geometries, J. Membr. Sci., 662, 120958.

[25] Mamah, S.C., Goh, P.S., Ismail, A.F., Suzaimi, N.D., Yogarathinam, L.T., Raji, Y.O., and El-badawy, T.H., 2021, Recent development in modification of polysulfone membrane for water treatment application, J. Water Process Eng., 40, 101835.

[26] Arahman, N., Jakfar, J., Dzulhijjah, W.A., Halimah, N., Silmina, S., Aulia, M.P., Fahrina, A., and Bilad, M.R., 2022, Hydrophilic antimicrobial polyethersulfone membrane for removal of turbidity of well-water, Water, 14 (22), 3769.

[27] Azhar, O., Jahan, Z., Sher, F., Niazi, M.B.K., Kakar, S.J., and Shahid, M., 2021, Cellulose acetate-polyvinyl alcohol blend hemodialysis membranes integrated with dialysis performance and high biocompatibility, Mater. Sci. Eng., C, 126, 112127.

[28] Kusworo, T.D., Irvan, I., Kumoro, A.C., Nabilah, Y., Rasendriya, A., Utomo, D.P., and Hasbullah, H., 2022, Advanced method for clean water recovery from batik wastewater via sequential adsorption, ozonation and photocatalytic membrane PVDF-TiO2/rGO processes, J. Environ. Chem. Eng., 10 (6), 108708.

[29] Wang, K.Y., Weber, M., and Chung, T.S., 2022, Polybenzimidazoles (PBIs) and state-of-the-art PBI hollow fiber membranes for water, organic solvent and gas separations: A review, J. Mater. Chem. A, 10 (16), 8687–8718.

[30] Jana, P., Shyam, M., Singh, S., Jayaprakash, V., and Dev, A., 2021, Biodegradable polymers in drug delivery and oral vaccination, Eur. Polym. J., 142, 110155.

[31] Qamruzzaman, M., Ahmed, F., and Mondal, M.I.H., 2022, An overview on starch-based sustainable hydrogels: Potential applications and aspects, J. Polym. Environ., 30 (1), 19–50.

[32] Djunaidi, M.C., and Wenten, I.G., 2021, The effect of functional group in polyeugenol for urea, creatinine, and vitamin B12 transport, Rasayan J. Chem., 14 (2), 1165–1174.

[33] Djunaidi, M.C., and Wenten, I.G., 2019, Synthesis of eugenol-based selective membrane for hemodialysis, IOP Conf. Ser.: Mater. Sci. Eng., 509 (1), 012069.



DOI: https://doi.org/10.22146/ijc.83065

Article Metrics

Abstract views : 40 | views : 1 | views : 0


Copyright (c) 2024 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.