Chemotaxonomic Relationship of Oligomer Resveratrol in Three Malaysian Dipterocarpus Species from the Taxonomic Tribe of Dipterocarpaceae
Liliwirianis Nawi(1), Wan Zuraida Wan Mohd Zain(2*), Norizan Ahmat(3), Che Puteh Osman(4), Yoshiaki Takaya(5), Aisyah Salihah Kamarozaman(6), Noorazlina Adnan(7), Siti Zakirah Azahar(8)
(1) Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Pahang, 26400 Jengka, Malaysia
(2) Faculty of Plantation and Agriculture, Universiti Teknologi MARA, Cawangan Jasin, 77300 Merlimau, Malaysia
(3) Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Malaysia; Centre of Foundation Studies, Universiti Teknologi MARA, Cawangan Selangor, Kampus Dengkil, 43800 Dengkil, Malaysia
(4) Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Malaysia; Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA,42300 Bandar Puncak Alam, Malaysia
(5) Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku, Nagoya 468-8503, Japan
(6) Centre of Foundation Studies, Universiti Teknologi MARA, Cawangan Selangor, Kampus Dengkil, 43800 Dengkil, Malaysia; Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA,42300 Bandar Puncak Alam, Malaysia
(7) Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Malaysia; Centre of Foundation Studies, Universiti Teknologi MARA, Cawangan Selangor, Kampus Dengkil, 43800 Dengkil, Malaysia; Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA,42300 Bandar Puncak Alam, Malaysia
(8) Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Malaysia; Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA,42300 Bandar Puncak Alam, Malaysia
(*) Corresponding Author
Abstract
A phytochemical investigation of three species of Malaysian Dipterocarpus contributed to the isolation of 22 compounds which consist of 15 oligostilbenoids, 2 terpenes, 2 coumarins, and 3 flavonoids. The isolation of flavonoids in the Dipterocarpaceae family is very limited. Moreover, 4-methoxepigallocatechin-3-O-O-(3-methyl) gallate (20) was isolated for the first time in the plant. The occurrence of 4-O-methylgallocatechin (18) and its stereoisomer; 4-O’-methylepigallocatechin (19) was first reported in the Dipterocarpaceae family. This study also reported the existence of several types of oligostilbenoids such as davidiol A (8), stenophyllol B (9), isohopeaphenol (11), resveratrol (1), and ampelopsin E (10) which are the first occurrence in Dipterocarpus genus and suggested a significant chemotaxonomic relationship between Dipterocarpus, more closely to Vatica which is classified under Dipterocarpeae tribe.
Keywords
Full Text:
Full Text PDFReferences
[1] Aslam, M.S., Ahmad, M.S., and Mamat, A.W., 2015, A phytochemical, ethnomedicinal and pharmacological review of genus Dipterocarpus, Int. J. Pharm. Pharm. Sci., 7 (4), 27–38.
[2] Yongram, C., Sungthong, B., Puthongking, P., and Weerapreeyakul, N., 2019, Chemical composition, antioxidant and cytotoxicity activities of leaves, bark, twigs and oleo-resin of Dipterocarpus alatus, Molecules, 24 (17), 3083.
[3] Hung, H.D., Tien, D.D., Ngoan, N.T., Duong, B.T., Viet, D.Q., Dien, P.G., Anh, B.K., and Nghi, D.H., 2021, Chemical constituents and anti-inflammatory effects of some stilbenoids from Dipterocarpus retusus fruits of Vietnam, Vietnam J. Sci. Technol., 59 (6), 724–733.
[4] Nalle, H.A., Lulan, T.Y.K., de Rozari, P., and Ola, A.R.B., 2021, Bioaktivitas metabolit sekunder dari genus Dipterocarpus, Chem. Notes, 3 (2), 1–11.
[5] Ito, T., Tanaka, T., Iinuma, M., Nakaya, K., Takahashi, Y., Sawa, R., Murata, J., and Darnaedi, D., 2004, Two new resveratrol (5-[1E)-2-(4-Hydroxyphenyl]-benzene-1,3-diol) tetramers with a tetrahydrofuran ring from Dipterocarpus grandiflorus, Helv. Chim. Acta, 87 (2), 479–495.
[6] Fernandes, A., and Maharani, R., 2021, The potential of production and characteristic of oleoresin tapped from Dipterocarpus verrucosus as natural ingredient for multi purposes, Proceedings of the 7th International Conference on Biological Science (ICBS 2021), Atlantis Press, Amsterdam, Netherlands, 59–65.
[7] Wan Mohd Zain, W.Z., Ahmat, N., Rukayadi, Y., Osman, C.P., Yusoff, N.A.H., and Winda, N., 2019, In vitro antimycotic activity of chemical constituents from Dipterocarpus verrucosus, Dipterocarpus cornutus and Dipterocarpus crinitus against opportunistic filamentous fungi, Asian J. Agric. Biol., 7 (3), 344–354.
[8] Seo, C., Ahn, E.K., Lee, J.A., Kang, J.S., Byun, H.W., and Hong, S.S., 2020, Phenolic constituents of the stems of Dipterocarpus intricatus, Chem. Nat. Comp., 56 (55), 920–922.
[9] Ramli, R., Ismail, N.H., and Manshoor, N., 2015, Identification of oligostilbenes from Dipterocarpus semivestitus through dereplication technique, Jurnal Teknologi, 77 (2), 85–88.
[10] Lim, P.C., Ramli, R., and Manshoor, N., 2023, Miyabenol C isomers and other oligostilbenes from the stem of Dipterocarpus semivestitus Sloot. and their chemotaxonomic significance, Biochem. Syst. Ecol., 110, 104685.
[11] Chen, Y.S., Chen, C.J., Yan, W., Ge, H.M., and Kong, L.D., 2017, Anti-hyperuricemic and anti-inflammatory actions of vaticaffinol isolated from Dipterocarpus alatus in hyperuricemic mice, Chin. J. Nat. Med., 15 (5), 330–340.
[12] Phuong Thao, T.T., Bui, T.Q., Thi Thanh Hai, N., Huynh, L.K., Quy, P.T., Bao, N.C., Dung, N.T., Chi, N.L., Van Loc, T., Smirnova, I.E., Petrova, A.V., Ninh, P.T., Van Sung, T., and Nhung, N.T.A., 2021, Newly synthesised oxime and lactone derivatives from Dipterocarpus alatus dipterocarpol as anti-diabetic inhibitors: Experimental bioassay-based evidence and theoretical computation-based prediction, RSC Adv., 11 (57), 35765–35782.
[13] Cvetković, T., Hinsinger, D.D., Thomas, D.C., Wieringa, J.J., Velautham, E., and Strijk, J.S., 2022, Phylogenomics and a revised tribal classification of subfamily Dipterocarpoideae (Dipterocarpaceae), Taxon, 71 (1), 85–102.
[14] Susilowati, A., Rachmat, H., Elfiati, D., Hidayat, A., Nurul Hadi, A., Zaitunah, Nainggolan, D., and Ginting, I., 2021, Floristic composition and diversity at keruing (Dipterocarpus spp.) habitat in Tangkahan, Gunung Leuser National Park, Indonesia, Biodiversitas, 22 (10), 4448–4456.
[15] Sanil, M.S., Balakrishnan, S., Sreekumar, V.B., and Dev, S.A., 2022, Dipterocarps used India as a raft from Gondwana to Eurasia, Taxon, 71 (6), 1214–1229.
[16] Sari, M.Y., Kiswandono, A.A., Susilowati, A., Hadi, S., Yandri, Y., and Suhartati, T., 2022, Activity of α-amylase inhibition against active compound from raru wood (Cotylelobium melanoxylon), Chem. Res. J., 7 (5), 98–106.
[17] Ashton, P.S., Morley, R.J., Heckenhauer, J., and Prasad, V., 2021, The magnificent Dipterocarps: précis for an Epitaph?, Kew Bull., 76 (2), 87–125.
[18] Ashton, P.S., and Heckenhauer, J., 2022, Tribe Shoreae (Dipterocarpaceae subfamily Dipterocarpoideae) finally dissected, Kew Bull., 77 (4), 885–903.
[19] Widians, J.A., Wati, M., Puspitasari, N., Hairah, U., and Tjikoa, A.F. 2023, Texture-based Dipterocarpaceae trunk classification using two stage transfer learning of VGG16, 2023 International Conference on Electrical Engineering and Informatics (ICEEI), Bandung, Indonesia, 10-11 October 2023, 1–4.
[20] Bansal, M., Morley, R.J., Nagaraju, S.K., Dutta, S., Mishra, A.K., Selveraj, J., Kumar, S., Niyolia, D., Harish, S.M., Abdelrahim, O.B., Hasan, S.E., Ramesh, B.R., Dayanandan, S., Morley, H.P., Ashton, P.S., and Prasad, V., 2022, Southeast Asian Dipterocarp origin and diversification driven by Africa-India floristic interchange, Science, 375 (6579), 455–460.
[21] Cvetković, T., Hinsinger, D.D., and Strijk, J.S., 2019, Exploring evolution and diversity of Chinese Dipterocarpaceae using next-generation sequencing, Sci. Rep., 9 (1), 11639.
[22] Widiyono, W., 2021, Biological and economic value of Dipterocarpaceae, the main timber forest product of Indonesia, InJAST, 2 (2), 104–112.
[23] Lulan, T., Fatmawati, S., Santoso, M., and Ersam, T., 2020, α-Viniferin as a potential antidiabetic and antiplasmodial extracted from Dipterocarpus littoralis, Heliyon, 6 (5), e04102.
[24] Lersprajak, O., Kanpipit, N., Nualkaew, N., Puthongking, P., and Thapphasaraphong, S., 2021, Effects of Dipterocarpus alatus leaf and bark extracts on UVB-protection, collagen stimulating activity and nitric oxide inhibition, Trop. J. Nat. Prod. Res., 5 (9), 1638–1644.
[25] Wan Mohd Zain, W.Z., Yusoff, N.A., Rukayadi, Y., Aziman, N., and Windyani, N., 2024, Anti-candidal activity of crude extracts and compounds from Dipterocarpus verrucosus Foxw. Ex Sloot, Dipterocarpus cornutus Dyer and Dipterocarpus crinitus Dyer., Malays. J. Chem., 26 (1), 302–312.
[26] Le, H.T., Luu, T.N., Nguyen, H.M.T., Nguyen, D.H.T., Le, P.T.Q., Trịnh, N.N., Le, V.S., Nguyen, H.D., and Van, H.T., 2021, Antibacterial, antioxidant and cytotoxic activities of different fractions of acetone extract from flowers of Dipterocarpus intricatus Dyer (Dipterocarpaceae), Plant Sci. Today, 8 (2), 273–277.
[27] Malik, J., and Santoso, A., 2021, Hidden bioactive of caryophyllene inside Keruing wood, IOP Conf. Ser.: Mater. Sci. Eng., 1034 (1), 012149.
[28] Ahmad, M., and Gani, A., 2021, Ultrasonicated resveratrol loaded starch nanocapsules: Characterization, bioactivity and release behaviour under in-vitro digestion, Carbohydr. Polym., 251, 117111.
[29] Zhang, J., Zhang, X., Wang, Q., and Wu, C., 2023, Changes of physicochemical properties and bioactivities of resveratrol-loaded core–shell biopolymer nanoparticles during in vitro gastrointestinal digestion, Food Chem., 424, 136444.
[30] Silva, P.M., Neto, M.D., Cerqueira, M.A., Rodriguez, I., Bourbon, A.I., Azevedo, A.G., Pastrana, L.M., Coimbra, M.A., Vicente, A.A., and Gonçalves, C., 2024, Resveratrol-loaded octenyl succinic anhydride modified starch emulsions and hydroxypropyl methylcellulose (HPMC) microparticles: Cytotoxicity and antioxidant bioactivity assessment after in vitro digestion, Int. J. Biol. Macromol., 259, 129288.
[31] Silva, A.F.R., Monteiro, M., Nunes, R., Baião, A., Braga, S.S., Sarmento, B., Coimbra, M.A., Silva, A.M.S., and Cardoso, S.M., 2022, Bread enriched with resveratrol: Influence of the delivery vehicles on its bioactivity, Food Biosci., 49, 101887.
[32] Sainz-Urruela, C., Vera-López, S., Díez-Pascual, A.M., and San Andrés, M.P., 2023, Bioactive trans-resveratrol as dispersant of graphene in water. Molecular interactions, J. Mol. Liq., 382, 121893.
[33] Fuloria, S., Sekar, M., Khattulanuar, F.S., Gan, S.H., Mat Rani, N.N.I., Ravi, S., Subramaniyan, V., Jeyabalan, S., Begum, M.Y., Chidambaram, K., Sathasivam, K.V., Safi, S.Z., Wu, Y.S., Nordin, R., Maziz, M.N.H., Kumarasamy, V., Lum, P.T., and Fuloria, N.K., 2022, Chemistry, biosynthesis and pharmacology of viniferin: Potential resveratrol-derived molecules for new drug discovery, development and therapy, Molecules, 27 (16), 5072.
[34] Mascarenhas-Melo, F., Araújo, A.R.T.S., Rodrigues, M., Mathur, A., Gonçalves, M.B.S., Tanwar, K., Heidarizadeh, F., Nejaddehbashi, F., Rahdar, A., Mazzola, P.G., Veiga, F., and Paiva-Santos, A.C., 2023, Dermatological bioactivities of resveratrol and nanotechnology strategies to boost its efficacy—An updated review, Cosmetics, 10 (3), 68.
[35] Lin, M.H., Hung, C.F., Sung, H.C., Yang, S.C., Yu, H.P., and Fang, J.Y., 2021, The bioactivities of resveratrol and its naturally occurring derivatives on skin, J. Food Drug Anal., 29 (1), 15–38.
[36] Meng, X., Zhou, J., Zhou, C.N., Gan, R.Y., and Li, H.B., 2020, Health benefits and molecular mechanisms of resveratrol: A narrative review, Foods, 9 (3), 340.
[37] Meng, T., Xiao, D., Muhammed, A., Deng, J., Chen, L., and He, J., 2021, Anti-inflammatory action and mechanisms of resveratrol, Molecules, 26 (1), 229.
[38] Sharifi-Rad, J., Quispe, C., Durazzo, A., Lucarini, M., Souto, E.B., Santini, A., Imran, M., Moussa, A.Y., Mostafa, N.M., El-Shazly, M., Sener, B., Schoebitz, M., Martorell, M., Dey, A., Calina, D., and Cruz-Martins, N., 2022, Resveratrol’ biotechnological applications: Enlightening its antimicrobial and antioxidant properties, J. Herb. Med., 32, 100550.
[39] Beaumont, P., Courtois, A., Atgié, C., Richard, T., and Krisa, S., 2022, In the shadow of resveratrol: Biological activities of epsilon-viniferin, J. Physiol. Biochem., 78 (2), 465–484.
[40] Yang, D.K., and Kang, H.S., 2018, Anti-diabetic effect of cotreatment with quercetin and resveratrol in streptozotocin-induced diabetic rats, Biomol. Ther., 26 (2), 130–138.
[41] Tietjen, I., Cassel, J., Register, E.T., Zhou, X.Y., Messick, T.E., Keeney, F., Lu, L.D., Beattie, K.D., Rali, T., Tebas, P., Ertl, H.C.J., Salvino, J.M., Davis, R.A., and Montaner, L.J., 2021, The natural stilbenoid (–)-hopeaphenol) inhibits cellular entry of SARS-CoV-2 USA-WA1/2020, B.1.1.7, and B.1.351 variants, Antimicrob. Agents Chemother., 65 (12), e00772-21.
[42] Wibowo, A., Ahmat, N., Hamzah, A.S., Latif, F.A., Norrizah, J.S., Khong, H.Y., and Takayama, H., 2014, Identification and biological activity of secondary metabolites from Dryobalanops beccarii, Phytochem. Lett., 9, 117–122.
[43] Matsuda, H., Asao, Y., Nakamura, S., Hamao, M., Sugimoto, S., Hongo, M., Pongpiriyadacha, Y., and Yoshikawa, M., 2009, Antidiabetogenic constituents from the Thai traditional medicine Cotylelobium melanoxylon, Chem. Pharm. Bull., 57 (5), 487–494.
[44] Tanaka, T., Ito, T., Nakaya, K., Iinuma, M., and Riswan, S., 2000, Oligostilbenoids in stem bark of Vatica rassak, Phytochemistry, 54 (1), 63–69.
[45] Ito, T., 2020, Resveratrol oligomer structure in Dipterocarpaceaeous plants, J. Nat. Med., 74 (4), 619–637.
[46] Shen, J., Zhou, Q., Li, P., Wang, Z., Liu, S., He, C., Zhang, C., and Xiao, P., 2017, Update on phytochemistry and pharmacology of naturally occurring resveratrol oligomers, Molecules, 22 (12), 2050.
[47] Ito, T., Hara, Y., Kubota, Y., Sawa, R., and Iinuma, M., 2016, Absolute structure of resveratrol hexamers in Dipterocarpaceaeous plants, Tetrahedron, 72 (7), 891–899.
[48] Ito T, Tanaka, T., Iinuma, M., Iliya, I., Nakaya, K., Ali, Z., Takahashi, Y., Sawa, R., Shirataki, Y., Murata, J., and Darnaedi, D., 2003, New oligomer resveratrols in the stem bark of Vatica pauciflora, Tetrahedron, 59 (28), 5347–5363.
[49] Faiz, S., Yousaf, M., Zahoor, A.F., Naqvi, S.A.R., Irfan, A., and Zaman, G., 2017, Synthetic strategies toward the synthesis of polyphenolic natural products: Pauciflorol F and isopaucifloral F: A review, Synth. Commun., 47 (12), 1121–1135.
[50] Kamarozaman, A.S., Latip, J., Paetz, C., and Syah, Y.M., 2015, Monomer stilbenoid glucosides from Vatica pauciflora and Vatica lowii (Dipterocarpaceae), Jurnal Teknologi, 77 (2), 69–72.
[51] Kartika, R., Sulastri, L., and Simanjuntak, P., 2021, Stilbinoid compound from ethanol extract of the bark ‘raru’, Vatica pauciflora Blume (Dipterocarpaceae), Rasayan J. Chem., 14 (1), 137–140.
[52] Atun, S., Achmad, S.A., Ghisalberti, E.L., Hakim, E.H., Makmur, L., and Syah, Y.M., 2004, Oligostilbenoids from Vatica umbonata (Dipterocarpaceae), Biochem. Syst. Ecol., 32 (11), 1051–1053.
[53] Seo, E.K., Chai, H., Constant, H.L., Santisuk, T., Reutrakul, V., Beecher, C.W.W., Farnsworth, N.R., Cordell, G.A., Pezzuto, J.M., and Kinghorn A.D., 1999, Resveratrol Tetramers from Vatica diospyroides, J. Org. Chem., 64, 6976–6983.
[54] Abe, N., Ito, T., Oyama, M., Sawa, R., Takahashi, Y., and Iinuma, M., 2011, Resveratrol derivatives from Vatica albiramis, Chem. Pharm. Bull., 59 (4), 452–457.
[55] Sultanbawa, M.U.S., Surendrakumar, S., Wazeer, M.I.M., and Bladon, P., 1981, Novel resveratrol tetramer, vaticaffinol, from Vatica affinis Thw. (Dipterocarpaceae), J. Chem. Soc., Chem. Commun., 23, 1204–1206.
[56] Zgoda-Pols, J.R., Freyer, A.J., Killmer, A.J., and Porter, J.R., 2002, Antimicrobial resveratrol tetramers from stem bark of Vatica oblongifolia, J. Nat. Prod., 65, 1554–1559.
[57] Wu, S.Y., Fu, Y.H., Zhou, Q., Bai, M., Chen, G.Y., Han, C.R., and Song, X.P., 2019, Biologically active oligostilbenes from the stems of Vatica mangachapoi and chemotaxonomic significance, Nat. Prod. Res., 33 (16), 2300–2307.
[58] Ito, T., and Iinuma, M., 2015, Isolation and structure elucidation of a novel resveratrol tetramer, vaticanol K, with a fused 2,7-dihydrooxepine–quinone methide from Vatica chinensis, Tetrahedron Lett., 56 (35), 5020–5023.
[59] Ito, T., and Iinuma, M., 2016, Occurrence of non-heterocyclic resveratrol tetramer in Vatica chinensis, Phytochem. Lett., 15, 37–41.
[60] Ito, T., Hara, Y., Fukaya, M., Ryu, K., and Iinuma, M., 2023, Resveratrol tetramer vaticanol N with a tribenzobicyclo[3.3.2]decatriene skeleton isolated from the leaves of Vatica bantamensis, Phytochem. Lett., 57, 16–21.
[61] Ito, T., Ito, H., and Iinuma, M., 2017, Absolute configuration of resveratrol oligomer glucosides isolated from the leaves of Upuna borneensis, Phytochem. Lett., 20, 26–31.
[62] Adnan, N., Kamarozaman, A. S., Rasol, N.E., Ahmat, N., Azahar, S.Z., and Mohd Johari M.S., 2023, Isolation of phenolic compounds from the stem bark of Anisoptera laevis (Dipterocarpaceae), Planta Med., 89 (14), 1328–1329.
[63] Atun, S., 2009, Hopeaphenol-O-glycoside, a compound isolated from stem bark Anisoptera marginata (Dipterocarpaceae), Indones. J. Chem., 9 (1), 151–157.
[64] Davis, R.A., Beattie, K.D., Xu, M., Yang, X., Yin, S., Holla, H., Healy, P.C., Sykes, M., Shelper, T., Avery, V.M., Elofsson, M., Sundin, C., and Quinn, R.J., 2014, Solving the supply of resveratrol tetramers from Papua New Guinean rainforest Anisoptera species that inhibit bacterial type III secretion systems, J. Nat. Prod., 77 (12), 2633–2640.
[65] Qin, Y.H, Zhang, J., Cui, J.T., Guo, Z.K., Jiang, N., Tan, R.X., and Ge, H.M., 2011, Oligostilbene from Vatica mangachapoi with xanthine oxidase and acetylcholinesterose inhibitory activity, RSC Adv., 1 (1), 135–141.
[66] Ito, T., Masuda, Y., Abe, N., Oyama, M., Sawa, R., Takahashi, Y., Chelladurai, V., and Iinuma, M., 2010, Chemical constituents in the leaves of Vateria indica, Chem. Pharm. Bull., 58 (10), 1369–1378.
[67] Bokel, M., Diyasena, M.N.C., Gunatilaka, A.A.L., Kraus, W., and Sotheeswaran, S., 1988, Canaliculatol, an antifungal resveratrol trimer from Stemonoporus canaliculatus, Phytochemistry, 27, 377–380.
[68] Samaradivakara, S.P., Samarasekera, R., Handunnetti, S.M., Weerasena, O.V.D.S.J., Al-Hamashi, A.A., Slama, J.T., Taylor, W.R., Alhadidi, Q., Shah, Z.A., Perera, L., and Tillekeratne, L.M.V., 2018, A bioactive resveratrol trimer from the stem bark of the Sri Lankan endemic plant Vateria copallifera, J. Nat. Prod., 81 (8), 1693–1700.
[69] Geewanada, Y.A., Gunawardena, P., Sultanbawa, M.U.S., and Balasubramaniam, S., 1980, Distribution of some triterpene and phenolic compounds in the extractives of endemic Dipterocarpacaea species of Sri Lanka, Phytochemistry, 19 (6), 1099–1102.
[70] Ito, T., Ali, Z., Furusawa, M., Iliya, I., Tanaka, T., Nakaya, K., Murata, J., Darnaedi, D., and Iinuma, M., 2006, Resveratrol oligomers and their O-glucosides from Cotylelobium lanceolatum, Chem. Pharm. Bull., 54 (3), 363–367.
[71] Thuy, P.T., Van Trang, N., Duc, D.X., and Son, N.T., 2021, The antioxidative potential of benzofuran-stilbene hybrid derivatives: A comparison between natural and synthetic compounds, Struct. Chem., 32 (6), 2271–2281.
[72] Wibowo, A., and Ahmat, N., 2015, Chemotaxonomic significance of oligostilbenoids isolated from Dryobalanops in the taxonomic of Dipterocarpaceae, Biochem. Syst. Ecol., 59, 31–35.
[73] Majee, S.B., Ash, D., Avlani, D., and Biswas, G.R., 2020, Therapeutic potential of plant-derived oligostilbenes and stilbene glycosides, Int. J. Curr. Pharm. Res., 12 (6), 13–19.
[74] Wibowo, A., Ahmat, N., Biau, F.J., Loh, J.S., and Hamzah, A.S., 2022, Cytotoxic and antibacterial properties of resveratrol oligomers from the stem bark of Dryobalanops rappa, Nat. Prod. J., 12 (4), 40–47.
DOI: https://doi.org/10.22146/ijc.82848
Article Metrics
Abstract views : 2200 | views : 1194Copyright (c) 2024 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.