Synthesis, Structural Determination and Antibacterial Properties of Zinc(II) Complexes Containing 4-Aminopyridine Ligands

https://doi.org/10.22146/ijc.82801

I Wayan Dasna(1*), Dewi Mariyam(2), Husni Wahyu Wijaya(3), Ubed Sonai Fahruddin Arrozi(4), Sugiarto Sugiarto(5)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, East Java, Indonesia; Center of Advanced Material for Renewable Energy, Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, East Java, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, East Java, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, East Java, Indonesia; Center of Advanced Material for Renewable Energy, Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, East Java, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, East Java, Indonesia
(5) Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 7398527, Japan
(*) Corresponding Author

Abstract


Three zinc(II) complexes containing 4-aminopyridine (4-NH2py) [Zn(4-NH2py)2(NCS)2] (1), [Zn(4-NH2py)2Cl2] (2), and [Zn(4-NH2py)2(NCS)Cl] (3) were synthesized and characterized by FTIR and single crystal X-ray diffraction. All complexes adopt a slightly distorted tetrahedral geometry with different crystal packing. Complex 1 crystallizes in the orthorhombic Pmmn space group, complex 2 in the monoclinic C2/c space group, and complex 3 in the orthorhombic Pbca space group. Non-covalent interactions such as NC-S···H, -Cl···H, and µ-µ stacking interaction between 4-NH2py and other ligands (NCS and Cl) are observed in the crystals packing. In vitro, antibacterial screening of all complexes was evaluated against two bacteria (Escherichia coli and Staphylococcus aureus). The results show that 1 has the highest antibacterial activity than 2 and 3. This difference is due to differences in the interactions elicited by the anion ligands.


Keywords


zinc(II) complexes; 4-NH2py; thiocyanato; chloro ligand; antibacterial activity

Full Text:

Full Text PDF


References

[1] Pal, S., 2018, "Pyridine: A Useful Ligand in Transition Metal Complexes" in Pyridine, Eds. Pandey, P.P., IntechOpen, Rijeka, Croatia, 57–74.

[2] Handy, J.V., Ayala, G., and Pike, R.D., 2017, Structural comparison of copper(II) thiocyanate pyridine complexes, Inorg. Chim. Acta, 456, 64–75.

[3] Yuoh, A.C.B., Agwara, M.O., Yufanyi, D.M., Conde, M.A., Jagan, R., and Oben Eyong, K., 2015, Synthesis, crystal structure, and antimicrobial properties of a novel 1-D cobalt coordination polymer with dicyanamide and 2-aminopyridine, Int. J. Inorg. Chem., 2015, 106838.

[4] Moustafa, M.E., Meshal, N.M., Ayad, M.I., and Goda, O.A., 2020, Aminopyridine transition metals complexes; Characterization, application and molecular orbital calculation, Benha J. Appl. Sci., 5 (7), 231–243.

[5] Mautner, F.A., Jantscher, P., Fischer, R.C., Torvisco, A., Vicente, R., Karsili, T.N.V., and Massoud, S.S., 2019, Synthesis and characterization of 1D coordination polymers of metal(II)-dicyanamido complexes, Polyhedron, 166, 36–43.

[6] Suckert, S., Terraschke, H., Reinsch, H., and Näther, C., 2017, Synthesis, crystal structures, thermal, magnetic and luminescence properties of Mn(II) and Cd(II) thiocyanate coordination compounds with 4-(Boc-amino)pyridine as co-ligand, Inorg. Chim. Acta, 461, 290–297.

[7] Mbani, A.L.O., Yufanyi, D.M., Tabong, C.D., Hubert, N.J., Yuoh, A.C.B., Paboudam, A.G., and Ondoh, A.M., 2022, Synthesis, crystal structure, DFT studies and Hirshfeld surface analysis of manganese(II) and cadmium(II) coordination polymers of 2-aminopyridine and dicyanamide, J. Mol. Struct., 1261, 132956.

[8] Mautner, F.A., Jantscher, P.V., Fischer, R.C., Torvisco, A., Reichmann, K., and Massoud, S.S., 2021, Syntheses, structural characterization, and thermal behaviour of metal complexes with 3-aminopyridine as co-ligands, Transition Met. Chem., 46 (3), 191–200.

[9] Yufanyi, D.M., Nono, H.J., Yuoh, A.C.B., Tabong, C.D., Judith, W., and Ondoh, A.M., 2021, Crystal packing studies, thermal properties and hirshfeld surface analysis in the Zn(II) complex of 3-aminopyridine with thiocyanate as co-ligand, Open J. Inorg. Chem., 11 (3), 63–84.

[10] Mariyam, D., Farida, N., Wijaya, H.W., and Dasna, I.W., 2022, Studi karakterisasi dan aktivitas antibakteri senyawa kompleks dari zink(II) klorida, kaliumtiosianat dan 2-aminopiridina, J. Ris. Kim., 13 (1), 100–110.

[11] Kartal, Z., and Şahin, O., 2021, The synthesis of heteroleptic cyanometallate aminopyridine complexes and an investigation into their structural properties with various spectroscopic methods, J. Mol. Struct., 1227, 129514.

[12] Sanchez Montilva, O.C., Movilla, F., Rodriguez, M.G., and Di Salvo, F., 2017, Synthesis, crystal structure and study of the crystal packing in the complex bis(4-aminopyridine-κN1)dichloridocobalt(II), Acta Crystallogr., Sect. C: Struct. Chem., 73 (5), 399–406.

[13] Wöhlert, S., Jess, I., Englert, U., and Näther, C., 2013, Synthesis and crystal structures of Zn(II) and Co(II) coordination compounds with ortho substituted pyridine ligands: Two structure types and polymorphism in the region of their coexistence, CrystEngComm, 15 (26), 5326–5336.

[14] Jochim, A., Radulovic, R., Jess, I., and Näther, C., 2020, Crystal structure of bis(tetramethylthiourea-κS)bis(thiocyanato-κN)cobalt(II), Acta Crystallogr., Sect. E: Crystallogr. Commun., 76 (8), 1373–1377.

[15] Jafari, M., Salehi, M., Kubicki, M., Arab, A., and Khaleghian, A., 2017, DFT studies and antioxidant activity of Schiff base metal complexes of 2-aminopyridine. Crystal structures of cobalt(II) and zinc(II) complexes, Inorg. Chim. Acta, 462, 329–335.

[16] Tsague Chimaine, F., Yufanyi, D.M., Colette Benedicta Yuoh, A., Eni, D.B., and Agwara, M.O., 2016, Synthesis, crystal structure, photoluminescent and antimicrobial properties of a thiocyanato-bridged copper(II) coordination polymer, Cogent Chem., 2 (1), 1253905.

[17] Setifi, Z., Geiger, D., Jelsch, C., Maris, T., Glidewell, C., Mirzaei, M., Arefian, M., and Setifi, F., 2018, The first Fe(II) complex bearing end-to-end dicyanamide as a double bridging ligand: Crystallography study and Hirshfeld surface analysis; completed with a CSD survey, J. Mol. Struct., 1173, 697–706.

[18] Nath, R.K., Roy, T.G., and Sutradhar, R.K., 2017, Synthesis of some Cd(II) and Zn(II) complexes of a tetraazamacrocyclic ligand and their antimicrobial activities, Asian-Australas. J. Biosci. Biotechnol., 2 (2), 136–144.

[19] Day, B.J., 2019, The science of licking your wounds: Function of oxidants in the innate immune system, Biochem. Pharmacol., 163, 451–457.

[20] Magacz, M., Kędziora, K., Sapa, J., and Krzyściak, W., 2019, The significance of lactoperoxidase system in oral health: Application and efficacy in oral hygiene products, Int. J. Mol. Sci., 20 (6), 1443.

[21] Prasch, J., Bernhart, E., Reicher, H., Kollroser, M., Rechberger, G.N., Koyani, C.N., Trummer, C., Rech, L., Rainer, P.P., Hammer, A., Malle, E., and Sattler, W., 2020, Myeloperoxidase-derived 2-chlorohexadecanal is generated in mouse heart during endotoxemia and induces modification of distinct cardiomyocyte protein subsets in vitro, Int. J. Mol. Sci., 21 (23), 9235.

[22] Mishra, O.P., Popov, A.V., Pietrofesa, R.A., Nakamaru-Ogiso, E., Andrake, M., and Christofidou-Solomidou, M., 2018, Synthetic secoisolariciresinol diglucoside (LGM2605) inhibits myeloperoxidase activity in inflammatory cells, Biochim. Biophys. Acta, Gen. Subj., 1862 (6), 1364–1375.

[23] Li, F., Xiong, X.S., Yang, Y.Y., Wang, J.J., Wang, M.M., Tang, J.W., Liu, Q.H., Wang, L., and Gu, B., 2021, Effects of NaCl concentrations on growth patterns, phenotypes associated with virulence, and energy metabolism in Escherichia coli BW25113, Front. Microbiol., 12, 705326.

[24] Effendy, E., 2007, Perspektif Baru Kimia Koordinasi Jilid 1, Bayumedia Publishing, Malang.

[25] Munadhiroh, A., Wijaya, H.W., Farida, N., Golhen, S., and Dasna, I.W., 2022, Synthesis, characterization, and preliminary study of [Co(2-aminopyridine)2(NCS)2] or bis(2-aminopyridine)dithiocyanato cobalt(II) as an antibacterial, J. Kim. Valensi, 8 (1), 23–29.

[26] Svirchuk, Y.S., 2006, Electrical Conductivity, A-to-Z Guide to Thermodynamics, Heat & Mass Transfer, and Fluids Engineering, e (l), 1–13.

[27] Sugiyama, H., Sekine, A., and Uekusa, H., 2015, Crystal structure of bis(4-aminopyridine)bis(isothiocyanato)cobalt(II), X-Ray Struct. Anal. Online, 31, 2014–2015.

[28] Makhlouf, J., Valkonen, A., and Smirani, W., 2022, Transition metal precursor impact on thiocyanate complexes crystallization: Isomorphous cobalt and nickel properties, Polyhedron, 213, 115625.

[29] Moustafa, I.M.I., Mohamed, N.M., and Ibrahim, S.M., 2022, Molecular modeling and antimicrobial screening studies on some 3-aminopyridine transition metal complexes, Open J. Inorg. Chem., 12 (3), 39–56.

[30] Linker, G.J., van Duijnen, P.T., and Broer, R., 2020, Understanding trends in molecular bond angles, J. Phys. Chem. A, 124 (7), 1306–1311.

[31] Effendy, E., 2017, Molekul, Struktur dan Sifat-Sifatnya, Indonesian Academic Publishing, Malang, Indonesia.

[32] Nakamoto, K., 2006, "Infrared and Raman Spectra of Inorganic and Coordination Compounds" in Handbook of Vibrational Spectroscopy, Eds. Chalmers, J.M., and Griffiths, P.R., Wiley, Hoboken, US.

[33] Buyukmurat, Y., and Akyuz, S., 2003, Theoretical and experimental studies of IR spectra of 4-aminopyridine metal(II) complexes, J. Mol. Struct., 651-653, 533–539.

[34] Ramotowska, S., Wysocka, M., Brzeski, J., Chylewska, A., and Makowski, M., 2020, A comprehensive approach to the analysis of antibiotic-metal complexes, TrAC, Trends Anal. Chem., 123, 115771.

[35] Claudel, M., Schwarte, J.V., and Fromm, K.M., 2020, New antimicrobial strategies based on metal complexes, Chemistry, 2 (4), 849–899.

[36] Tevyashova, A.N., and Tevyashova, A.N., 2021, Recent trends in synthesis of chloramphenicol new derivatives, Antibiotics, 10 (4), 370.

[37] Dinos, G.P., Athanassopoulos, C.M., Missiri, D.A., Giannopoulou, P.C., Vlachogiannis, I.A., Papadopoulos, G.E., Papaioannou, D., and Kalpaxis, D.L., 2016, Chloramphenicol derivatives as antibacterial and anticancer agents: Historic problems and current solutions, Antibiotics, 5 (2), 20.

[38] Tsirogianni, A., Kournoutou, G.G., Bougas, A., Poulou-Sidiropoulou, E., Dinos, G., and Athanassopoulos, C.M., 2021, New chloramphenicol derivatives with a modified dichloroacetyl tail as potential antimicrobial agents, Antibiotics, 10 (4), 394.

[39] Kostopoulou, O.N., Magoulas, G.E., Papadopoulos, G.E., Mouzaki, A., Dinos, G.P., Papaioannou, D., and Kalpaxis, D.L., 2015, Synthesis and evaluation of chloramphenicol homodimers: Molecular target, antimicrobial activity, and toxicity against human cells, PLoS One, 10 (8), e0134526.

[40] Al–Shaheen, A.J., 2010, Study on synthesis and antibacterial activity of Co(II) and Ni(II) complexes including isopropylacetone thiosemicarbozone and cresol, Iraqi Natl. J. Chem., 37, 111–127.



DOI: https://doi.org/10.22146/ijc.82801

Article Metrics

Abstract views : 2291 | views : 1021


Copyright (c) 2023 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.