Effect of Synthesis Temperature on Adsorbent Performance of Blending Anionic and Cationic Gels in Divalent Metal Ions Adsorption

https://doi.org/10.22146/ijc.82104

Eva Oktavia Ningrum(1*), Suprapto Suprapto(2), Saidah Altway(3), Warlinda Eka Triastuti(4), Afan Hamzah(5), Agus Surono(6), Lulu Sekar Taji(7), Erlangga Ardiansyah(8)

(1) Department of Industrial Chemical Engineering, Faculty of Vocational Studies, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
(2) Department of Industrial Chemical Engineering, Faculty of Vocational Studies, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
(3) Department of Industrial Chemical Engineering, Faculty of Vocational Studies, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
(4) Department of Industrial Chemical Engineering, Faculty of Vocational Studies, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
(5) Department of Industrial Chemical Engineering, Faculty of Vocational Studies, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
(6) Department of Industrial Chemical Engineering, Faculty of Vocational Studies, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
(7) Department of Industrial Chemical Engineering, Faculty of Vocational Studies, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
(8) Department of Industrial Chemical Engineering, Faculty of Vocational Studies, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
(*) Corresponding Author

Abstract


In this study, the anionic and cationic gels were synthesized separately using copolymerization between N-isopropylacrylamide (NIPAM) and acrylic acid or chitosan through a polymerization reaction using N,N'-methylenebisacrylamide (MBAA) as a cross-linker with various monomer concentrations and synthesis temperature. The anionic and cationic gels were blended to minimize inter-intra particle association and to improve the adsorption ability. The FTIR analysis found that the synthesis of the NIPAM-co-acrylic acid and NIPAM-co-chitosan gels was successfully carried out, indicating no presence of a vinyl group in the functional group. The result showed that the ion adsorption amount of Pb2+ ions blending gels increased significantly, almost twice compared to the adsorption before blending. The adsorption amount of Pb2+ ions increased with increasing the gel synthesis temperature. The adsorption amount follows the order of Pb2+ > Fe2+ > Ni2+. The adsorption amount of Pb2+ tends to decrease with increasing sedimentation volume. The higher the synthesis temperature, the larger the porous diameter formed. These results demonstrate that blending gel of NIPAM-co-chitosan and NIPAM-co-acrylic acid is a feasible alternative for removing heavy metal ions owing to its good adsorption performance.


Keywords


anionic and cationic gel; adsorption amount; NIPAM-co-acrylic acid; NIPAM-co-chitosan

Full Text:

Full Text PDF


References

[1] Ye, S., Zeng, G., Wu, H., Zhang, C., Dai, J., Liang, J., Yu, J., Ren, X., Yi, H., Cheng, M., and Zhang, C., 2017, Biological technologies for the remediation of co-contaminated soil, Crit. Rev. Biotechnol., 37 (8), 1062–1076.

[2] Hartoyo, D., Soepardjo, A.H., Alamsyah, A.T., and Herlambang, A., 2018, “Marine Ecosystem Sustainability Post-Mine Closure Activities (Macrobenthos Dynamics Study Due to the Influence of Tailing Disposal in Buyat Bay, Minahasa, Indonesia)” in Sustainable Future for Human Security: Environment and Resources, Eds. McLellan, B., Springer Singapore, Singapore, 115–126.

[3] Tamburini, M., Badocco, D., Ercadi, R., Turicchia, E., Zampa, G., Gasparini, F., Ballarin, L., Guerra, R., Lasut, M.T., Makapedua, D.M., Mamuaja, J., Pastore, P., and Ponti, M., 2022, Bioaccumulation of mercury and other trace elements in the edible Holothurian Holothuria (Halodeima) atra in relation to gold mining activities in North Sulawesi, Indonesia, Front. Mar. Sci., 9, 863629.

[4] Lin, S.H., and Kiang, C.D., 2003, Chromic acid recovery from waste acid solution by an ion exchange process: Equilibrium and column ion exchange modeling, Chem. Eng. J., 92 (1-3), 193–199.

[5] Fomina, M., and Gadd, G.M., 2014, Biosorption: Current perspectives on concept, definition and application, Bioresour. Technol., 160, 3–14.

[6] Ramrakhiani, L., Ghosh, S., and Majumdar, S., 2016, Surface modification of naturally available biomass for enhancement of heavy metal removal efficiency, upscaling prospects, and management aspects of spent biosorbents: A review, Appl. Biochem. Biotechnol., 180 (1), 41–78.

[7] Sari, M.K., Basuki, R., and Rusdiarso, B., 2021, Adsorption of Pb(II) from aqueous solutions onto humic acid modified by urea-formaldehyde: Effect of pH, ionic strength, contact time, and initial concentration, Indones. J. Chem., 21 (6), 1371–1388.

[8] Amrulloh, H., Kurniawan, Y.S., Ichsan, C., Jelita, J., Simanjuntak, W., Situmeang, R.T.M., and Krisbiantoro, P., 2021, Highly efficient removal of Pb(II) and Cd(II) ions using magnesium hydroxide nanostructure prepared from seawater bittern by electrochemical method, Colloids Surf., A, 631, 127687.

[9] Liang, S., Cao, S., Liu, C., Zeb, S., Cui, Y., and Sun, G., 2020, Heavy metal adsorption using structurally preorganized adsorbent, RSC Adv., 10 (12), 7259–7264.

[10] Huda, B.N., Wahyuni, E.T., and Mudasir, M., 2023, Simultaneous adsorption of Pb(II) and Cd(II) in the presence of Mg(II) ion using eco-friendly immobilized dithizone on coal bottom ash, S. Afr. J. Chem. Eng., 45, 315–327.

[11] Salman, M.S., Znad, H., Hasan, M.N., and Hasan, M.M., 2021, Optimization of innovative composite sensor for Pb(II) detection and capturing from water samples, Microchem. J., 160, 105765.

[12] Jumina, J., Priastomo, Y., Setiawan, H.R., Mutmainah, M., Kurniawan, Y.S., and Ohto, K., 2020, Simultaneous removal of lead(II), chromium(III), and copper(II) heavy metal ions through and adsorption process using C-phenylcalix[4]pyrogallolarene material, J. Environ. Chem. Eng., 8 (4), 103971.

[13] Wang, H., Wang, S., Wang, S., Fu, L., and Zhang, L., 2023, Efficient metal-organic framework adsorbents for removal of harmful heavy metal Pb(II) from solution: Activation energy and interaction mechanism, J. Environ. Chem. Eng., 11 (2), 109335.

[14] Busroni, B., Siswanta, D., Jumina, J., Santosa, S.J., and Anwar, C., 2022, Adsorption of Pb(II) on calix[4]arene derivatives: Kinetics and isotherm studies, Indones. J. Chem., 22 (6), 1480–1489.

[15] Weyrich, J.N., Mason, J.R., Bazilevskaya, E.A., and Yang, H., 2023, Understanding the mechanism for adsorption of Pb(II) ions by Cu-BTC metal-organic framework, Molecules, 28 (14), 5443.

[16] Lavelim, B., Destiarti, L., Adhitiyawarman, A., and Sasri, R., 2023, Synthesis of reduced graphene oxide-bentonite composite and its application as lead(II) ion adsorbent, Indones. J. Chem., 23 (1), 1–11.

[17] Nurain, A., Sarker, P., Rahaman, M.S., Rahman, M.M., and Uddin, M.K., 2021, Utilization of banana (Musa sapientum) peel for removal of Pb2+ from aqueous solution, J. Multidiscip. Appl. Nat. Sci., 1 (2), 117–128.

[18] Ningrum, E.O., 2019, The adsorption behaviors of thermosensitive poly(DMAAPS) grafted onto EVA porous support, IOP Conf. Ser.: Mater. Sci. Eng., 543 (1), 012037.

[19] Ningrum, E.O., Sakohara, S., Gotoh, T., Suprapto, S., and Humaidah, N., 2020, Correlating properties between sulfobetaine hydrogels and polymers with different carbon spacer lengths, Polymer, 186, 122013.

[20] Ningrum, E.O., Bagus, A., Sakohara, S., Suprapto, S., and Humaidah, N., 2019, Reversible adsorption-desorption of Zn(II) and Pb(II) in aqueous solution by thermosensitive-sulfobetaine gel, Mater. Sci. Forum, 964, 221–227.

[21] Suharto, T., Goto, T., and Nakai, S., 2021, Simultaneous adsorption of cation and anion by thermosensitive hydrogels, MATEC Web Conf., 333, 11007.

[22] Ningrum, E.O., Bagus, A., Agustiani, E., and Ni’mah, H., 2020, Thermosensitive and chitosan of crab (Portunus pelagicus) shells gel based adsorbent for reversible adsorption-desorption of several toxic metal ions, IOP Conf. Ser.: Earth Environ. Sci., 460, 012017.

[23] Suprapto, S., Gotoh, T., Humaidah, N., Febryanita, R., Firdaus, M.S., and Ningrum, E.O., 2020, The effect of synthesis condition of the ability of swelling, adsorption, and desorption of zwitterionic sulfobetaine-based gel, Int. J. Technol., 11 (2), 299–309.

[24] Ningrum, E.O., Purwanto, A., Mulyadi, E.O., Dewitasari, D.I., and Sumarno, S., 2017, Adsorption and desorption of Na+ and NO3 ions on thermosensitive NIPAM-co-DMAAPS gel in aqueous solution, Indones. J. Chem., 17 (3), 446–452.

[25] Ningrum, E.O., Murakami, Y., Ohfuka, Y., Gotoh, T., and Sakohara, S., 2014, Investigation of ion adsorption properties of sulfobetaine gel and relationship with its swelling behavior, Polymer, 55 (20), 5189–5197.

[26] Salman, M.S., Hasan, M.N., Hasan, M.M., Kubra, K.T., Sheikh, M.C., Rehan, A.I., Waliullah, R.M., Rasee, A.I., Awual, M.E., Hossain, M.S., Alsukaibi, A.K.D., Alshammari, H.M., and Awual, M.R., 2023, Improving copper(II) ion detection and adsorption from wastewater by the ligand-functionalized composite adsorbent, J. Mol. Struct., 1282, 135259.

[27] Hasan, M.M., Kubra, K.T., Hasan, M.N., Awual, M.E., Salman, M.S., Sheikh, M.C., Rehan, A.I., Rasee, A.I., Waliullah, R.M., Islam, M.S., Khandaker, S., Islam, A., Hossain, M.S., Alsukaibi, A.K.D., Alshammari, H.M., and Awual, M.R., 2023, Sustainable ligand-modified based composite material for the selective and effective cadmium(II) capturing from wastewater, J. Mol. Liq., 371, 121125.

[28] Hasan, M.N., Salman, M.S., Hasan, M.M., Kubra, K.T., Sheikh, M.C., Rehan, A.I., Rasee, A.I., Awual, M.E., Waliullah, R.M., Hossain, M.S., Islam, A., Khandaker, S., Alsukaibi, A.K.D., Alshammari, H.M., and Awual, M.R., 2023, Assessing sustainable Lutetium(III) ions adsorption and recovery using novel composite hybrid nanomaterials, J. Mol. Struct., 1276, 134795.

[29] Awual, M.R., 2019, A facile composite material for enhanced cadmium(II) ion capturing from wastewater, J. Environ. Chem. Eng., 7 (5), 103378.

[30] Islam, A., Teo, S.H., Taufiq-Yap, Y.H., Ng, C.H., Vo, D.V.N., Ibrahim, M.L., Hasan, M.M., Khan, M.A.R., Nur, A.S.M., and Awual, M.R., 2021, Step towards the sustainable toxic dyes removal and recycling from aqueous solution-A comprehensive review, Resour., Conserv. Recycl., 175, 105849.

[31] Zhang, Y., Haris, M., Zhang, L., Zhang, C., Wei, T., Li, X., Niu, Y., Li, Y., Guo, J., and Li, X., 2022, Amino-modified chitosan/gold tailings composite for selective and highly efficient removal of lead and cadmium from wastewater, Chemosphere, 308, 136086.

[32] Karthik, R., and Meenakshi, S., 2015, Removal of Pb(II) and Cd(II) ions from aqueous solution using polyaniline grafted chitosan, Chem. Eng. J., 263, 168–177.

[33] Awual, M.R., 2019, Mesoporous composite material for efficient lead(II) detection and removal from aqueous media, J. Environ. Chem. Eng., 7 (3), 103124.

[34] Zhang, J., Chu, L.Y., Li, Y.K., and Lee, Y.M., 2007, Dual thermo-and pH-sensitive poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with rapid response behaviors, Polymer, 48 (6), 1718–1728.

[35] Qi, M., Li, G., Yu, N., Meng, Y., and Liu, X., 2014, Synthesis of thermo-sensitive polyelectrolyte complex nanoparticles from CS-g-PNIPAM and SA-g-PNIPAM for controlled drug release, Macromol. Res., 22 (9), 1004–1011.

[36] Meng, T., Xie, R., Chen, Y.C., Cheng, C.J., Li, P.F., Ju, X.J., and Chu, L.Y., 2010, A thermo-responsive affinity membrane with nano-structured pores and grafted poly(N-isopropylacrylamide) surface layer for hydrophobic adsorption, J. Membr. Sci., 349 (1-2), 258–267.

[37] García-Peñas, A., Biswas, C.S., Liang, W., Wang, Y., Yang, P., and Stadler, F.J., 2019, Effect of hydrophobic interactions on lower critical solution temperature for poly(N-isopropylacrylamide-co-dopamine methacrylamide) copolymers, Polymers, 11 (6), 991.

[38] Singh, R., Deshmukh, S.A., Kamath, G., Sankaranarayanan, S.K.R.S., and Balasubramanian, G., 2017, Controlling the aqueous solubility of PNIPAM with hydrophobic molecular units, Comput. Mater. Sci., 126, 191–203.

[39] Bokias, G., Hourdet, D., Iliopoulos, I., Staikos, G., and Audebert, R., 1997, Hydrophobic interactions of poly(N-isopropylacrylamide) with hydrophobically modified poly(sodium acrylate) in aqueous solution, Macromolecules, 30 (26), 8293–8297.

[40] Ohnsorg, M.L., Ting, J.M., Jones, S.D., Jung, S., Bates, F.S., and Reineke, T.M., 2019, Tuning PNIPAm self-assembly and thermoresponse: Roles of hydrophobic end-groups and hydrophilic comonomer, Polym. Chem., 10 (25), 3469–3479.



DOI: https://doi.org/10.22146/ijc.82104

Article Metrics

Abstract views : 2559 | views : 1374


Copyright (c) 2023 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.