Modifications of Poly(lactic Acid) with Blends and Plasticization for Tenacity and Toughness Improvement

https://doi.org/10.22146/ijc.80830

Mohd Bijarimi Mat Piah(1*), Mohammad Norazmi Ahmad(2), Erna Normaya Abdullah(3), Muhammad Zakir Muzakkar(4)

(1) Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuh Persiaran Tun Khalil Yaakob, Kuantan 26300, Malaysia
(2) Experimental and Theoretical Research Laboratory, Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Malaysia
(3) Experimental and Theoretical Research Laboratory, Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Malaysia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo, Jl. Kampus Hijau Bumi Tridharma, Anduonou, Kendari 93132, Indonesia
(*) Corresponding Author

Abstract


This review focuses on the modification of the inherent brittleness of biodegradable poly(lactic acid) (PLA) to increase its toughness, as well as recent advances in this field. The most often utilized toughening methods are melt blending, plasticization, and rubber toughening. The process of selecting a toughening scheme is still difficult, although it directly affects the blend's mechanical properties. There has been a lot of development, but there is still a long way to go before we get easily processable, totally bio-based, 100% biodegradable PLA. The blends of PLA with other polymers, such as plasticizers or rubber, are often incompatible with one another, which causes the blend's individual components to behave in a manner consistent with phase separation. Polymer blending has been shown to be particularly effective in attaining high-impact strength. This review addresses the recent progress in improving the toughened PLA to gain properties necessary for the material's future engineering applications. As 3D and 4D printing becomes more accessible, PLA characteristics may be modified and treated utilizing more sophisticated production techniques.


Keywords


PLA; blend; rubber; plasticization; toughness

Full Text:

Full Text PDF


References

[1] Trinh, B.M., Tadele, D.T., and Mekonnen, T.H., 2022, Robust and high barrier thermoplastic starch – PLA blend films using starch-graft-poly(lactic acid) as a compatibilizer, Mater. Adv., 3 (15), 6208–6221.

[2] Moshiul Alam, A.K.M., Beg, M.D.H., Yunus, R.M., Bijarimi, M., Mina, M.F., Maria, K.H., and Mieno, T., 2018, Modification of structure and properties of well-dispersed dendrimer coated multi-walled carbon nanotube reinforced polyester nanocomposites, Polym. Test., 68, 116–125.

[3] Bijarimi, M., Ahmad, S., and Moshiul Alam, A.K.M., 2017, Toughening effect of liquid natural rubber on the morphology and thermo-mechanical properties of the poly(lactic acid) ternary blend, Polym. Bull., 74 (8), 3301–3317.

[4] Bijarimi, M., Ahmad, S., Rasid, R., Khushairi, M.A., and Zakir, M., 2016, Poly(lactic acid)/poly(ethylene glycol) blends: Mechanical, thermal and morphological properties, AIP Conf. Proc., 1727, 020002.

[5] Fu, Y., Liu, L., Zhang, J., and Hiscox, W.C., 2014, Functionalized graphenes with polymer toughener as novel interface modifier for property-tailored polylactic acid/graphene nanocomposites, Polymer, 55 (24), 6381–6389.

[6] Hafidzah, F., Bijarimi, M., Alhadadi, W., Salleh, S., Norazmi, M., and Normaya, E., 2020, Statistical study on the interaction factors of polypropylene-graft-maleic anhydride (PP-g-MA) with graphene nanoplatelet (GNP) at various poly(lactic acid)/polypropylene (PLA/PP) blends ratio, Indones. J. Chem., 21 (1), 234–242.

[7] Bijarimi, M., Syuhada, A., Zulaini, N., Shahadah, N., Alhadadi, W., Ahmad, M.N., Ramli, A., and Normaya, E., 2020, Poly(lactic acid)/acrylonitrile butadiene styrene nanocomposites with hybrid graphene nanoplatelet/organomontmorillonite: Effect of processing temperatures, Int. Polym. Process., 35 (4), 355–366.

[8] Bijarimi, M., Shahadah, N., Ramli, A., Nurdin, S., Alhadadi, W., Muzakkar, M.Z., and Jaafar, J., 2020, Poly(lactic acid) (PLA)/acrylonitrile butadiene styrene (ABS) with graphene nanoplatelet (GNP) nanocomposites, Indones. J. Chem., 20 (2), 276–281.

[9] Harris, M., Mohsin, H., Potgieter, J., Ishfaq, K., Archer, R., Chen, Q., De Silva, K., Guen, M.J.L., Wilson, R., and Arif, K.M., 2022, Partial biodegradable blend with high stability against biodegradation for fused deposition modeling, Polymers, 14 (8), 1541.

[10] Bijarimi, M., Abdulsalam, Y., Norazmi, M., Normaya, E., Alhadadi, W., and Desa, M.S.Z., 2023, Preparation and characterization of poly(lactic acid)/linear low density polyethylene/recycled tire waste/graphene nanocomposites, Mater. Today: Proc., In Press, Corrected Proof.

[11] Grijpma, D.W., Altpeter, H., Bevis, M.J., and Feijen, J., 2002, Improvement of the mechanical properties of poly(D,L-lactide) by orientation, Polym. Int., 51 (10), 845–851.

[12] Jansen, J., Koopmans, S.A., Los, L.I., van der Worp, R.J., Podt, J.G., Hooymans, J.M.M., Feijen, J., and Grijpma, D.W., 2011, Intraocular degradation behavior of crosslinked and linear poly(trimethylene carbonate) and poly(D,L-lactic acid), Biomaterials, 32 (22), 4994–5002.

[13] Mark, J.E., 1999, Polymer Data Handbook, Oxford University Press, New York, US.

[14] Murariu, M., Paint, Y., Murariu, O., Laoutid, F., and Dubois, P., 2022, Tailoring and long-term preservation of the properties of PLA composites with "green" plasticizers, Polymers, 14 (22), 4836.

[15] Murariu, M., Arzoumanian, T., Paint, Y., Murariu, O., Raquez, J.M., and Dubois, P., 2022, Engineered polylactide (PLA)–polyamide (PA) blends for durable applications: 1. PLA with high crystallization ability to tune up the properties of PLA/PA12 blends, Eur. J. Mater., 1–36.

[16] Vink, E.T.H., Rábago, K.R., Glassner, D.A., Springs, B., O'Connor, R.P., Kolstad, J., and Gruber, P.R., 2004, The sustainability of NatureWorks™ polylactide polymers and Ingeo™ polylactide fibers: An update of the future, Macromol. Biosci., 4 (6), 551–564.

[17] Sadeghi Ghari, H., and Nazockdast, H., 2022, Morphology development and mechanical properties of PLA/differently plasticized starch (TPS) binary blends in comparison with PLA/dynamically crosslinked “TPS+EVA” ternary blends, Polymer, 245, 124729.

[18] Nofar, M., Mohammadi, M., and Carreau, P.J., 2021, Super enhancement of rheological properties of amorphous PLA through generation of a fiberlike oriented crystal network, J. Rheol., 65 (4), 493–505.

[19] Ranakoti, L., Gangil, B., Mishra, S.K., Singh, T., Sharma, S., Ilyas, R.A., and El-Khatib, S., 2022, Critical review on polylactic acid: properties, structure, processing, biocomposites, and nanocomposites, Materials, 15 (12), 4312.

[20] Zhao, X., Hu, H., Wang, X., Yu, X., Zhou, W., and Peng, S., 2020, Super tough poly(lactic acid) blends: A comprehensive review, RSC Adv., 10 (22), 13316–13368.

[21] Abdelrazek, S.G., Abou Taleb, E.M.A., Mahmoud, A.S., and Hamouda, T., 2022, Utilization of polylactic acid (PLA) in textile food packaging: A review, Egypt. J. Chem., 65 (3), 725–738.

[22] Lunt, J., 1998, Large-scale production, properties and commercial applications of polylactic acid polymers, Polym. Degrad. Stab., 59 (1-3), 145–152.

[23] Gupta, A.P., and Kumar, V., 2007, New emerging trends in synthetic biodegradable polymers - Polylactide: A critique, Eur. Polym. J., 43 (10), 4053–4074.

[24] Sinha Ray, S., Yamada, K., Okamoto, M., and Ueda, K., 2002, New polylactide-layered silicate nanocomposites. 2. Concurrent improvements of material properties, biodegradability and melt rheology, Polymer, 44 (3), 857–866.

[25] Toyota-Boshoku, 2013, Novel bio-based plastic with top-level impact strength, Toyota Central R&D Labs., Inc., https://www.toyota-boshoku.com/asia/news/release/detail.php?id=1954.

[26] Utracki, L.A., 2002, Compatibilization of polymer blends, Can. J. Chem. Eng., 80 (6), 1008–1016.

[27] Mukherji, D., de Oliveira, T.E., Ruscher, C., and Rottler, J., 2022, Thermodynamics, morphology, mechanics, and thermal transport of PMMA-PLA blends, Phys. Rev. Mater., 6 (2), 025606.

[28] Bijarimi, M., Ahmad, S., and Rasid, R., 2014, Mechanical, thermal and morphological properties of poly(lactic acid)/epoxidized natural rubber blends, J. Elastomers Plast., 46 (4), 338–354.

[29] Bijarimi, M., Ahmad, S., and Rasid, R., 2013, Mechanical, thermal and morphological properties of poly(lactic acid)/natural rubber nanocomposites, J. Reinf. Plast. Compos., 32 (21), 1656–1667.

[30] Reddy, N., Nama, D., and Yang, Y., 2008, Polylactic acid/polypropylene polyblend fibers for better resistance to degradation, Polym. Degrad. Stab., 93 (1), 233–241.

[31] Kanzawa, T., and Tokumitsu, K., 2009, A study for graft-reaction of PEG onto PLA chains by reactive processing, J. Soc. Mater. Sci., Jpn., 21 (8), 469–473.

[32] Sun, R., Du, J., Pan, G.F., Zhang, S., Zhang, Z.P., and Xiong, C.D., 2004, Development and in vitro characterization of PDLLA/β-TCP/PLA-PEG composite scaffolds, Transactions, 7th World Biomaterials Congress, 17-21 May 2004, Sydney Convention & Exhibition Centre, Darling Harbour, Sydney, Australia, 869.

[33] Brown, C.D., Tae, G., Stayton, P.S., and Hoffman, A.S., 2004, Controlled delivery of growth factors from PEG/PLA degradable matrices and heparin-PEG affinity hydrogels, Transactions, 7th World Biomaterials Congress, 17-21 May 2004, Sydney Convention & Exhibition Centre, Darling Harbour, Sydney, Australia, 186.

[34] Ren, J., Hong, H., Ren, T., and Teng, X., 2006, Preparation and characterization of magnetic PLA-PEG composite nanoparticles for drug targeting, React. Funct. Polym., 66 (9), 944–951.

[35] Ren, J., Hong, H.Y., Ren, T.B., and Teng, X.R., 2005, Preparation and characterization of magnetic PLA-PEG composite particles, Mater. Lett., 59 (21), 2655–2658.

[36] Zhang, H., Xia, H., Wang, J., and Li, Y., 2009, High intensity focused ultrasound-responsive release behavior of PLA-b-PEG copolymer micelles, J. Controlled Release, 139 (1), 31–39.

[37] Vila, A., Gill, H., McCallion, O., and Alonso, M.J., 2004, Transport of PLA-PEG particles across the nasal mucosa: Effect of particle size and PEG coating density, J. Controlled Release, 98 (2), 231–244.

[38] Sasatsu, M., Onishi, H., and Machida, Y., 2005, Preparation of a PLA-PEG block copolymer using a PLA derivative with a formyl terminal group and its application to nanoparticulate formulation, Int. J. Pharm., 294 (1-2), 233–245.

[39] He, G., Ma, L.L., Pan, J., and Venkatraman, S., 2007, ABA and BAB type triblock copolymers of PEG and PLA: A comparative study of drug release properties and "stealth" particle characteristics, Int. J. Pharm., 334 (1-2), 48–55.

[40] Govender, T., Riley, T., Ehtezazi, T., Garnett, M.C., Stolnik, S., Illum, L., and Davis, S.S., 2000, Defining the drug incorporation properties of PLA-PEG nanoparticles, Int. J. Pharm., 199 (1), 95–110.

[41] Heald, C.R., Stolnik, S., De Matteis, C., Garnett, M.C., Illum, L., Davis, S.S., and Leermakers, F.A.M., 2003, Characterisation of poly(lactic acid):poly(ethyleneoxide) (PLA:PEG) nanoparticles using the self-consistent theory modelling approach, Colloids Surf., A, 212 (1), 57–64.

[42] Heald, C.R., Stolnik, S., De Matteis, C., Garnett, M.C., Illum, L., Davis, S.S., and Leermakers, F.A.M., 2001, Self-consistent field modelling of poly(lactic acid)-poly(ethylene glycol) particles, Colloids Surf., A, 179 (1), 79–91.

[43] Zhang, L., Xiong, C., and Deng, X., 1995, Biodegradable polyester blends for biomedical application, J. Appl. Polym. Sci., 56 (1), 103–112.

[44] Chen, C.C., Chueh, J.Y., Tseng, H., Huang, H.M., and Lee, S.Y., 2003, Preparation and characterization of biodegradable PLA polymeric blends, Biomaterials, 24 (7), 1167–1173.

[45] Rasal, R.M., Janorkar, A.V., and Hirt, D.E., 2010, Poly(lactic acid) modifications, Prog. Polym. Sci., 35 (3), 338–356.

[46] Tullo, A.H., 2002, Breaking the bank with new polymers, Chem Eng. News, 80 (20), 13–19.

[47] Hiljanen-Vainio, M., Varpomaa, P., Seppälä, J., and Törmälä, P., 1996, Modification of poly-(L-lactides) by blending: Mechanical and hydrolytic behavior, Macromol. Chem. Phys., 197 (4), 1503–1523.

[48] Ismail, H., and Suryadiansyah, S., 2002, Thermoplastic elastomers based on polypropylene/natural rubber and polypropylene/recycle rubber blends, Polym. Test., 21 (4), 389–395.

[49] Asaletha, R., Kumaran, M.G., and Thomas, S., 1999, Thermoplastic elastomers from blends of polystyrene and natural rubber: Morphology and mechanical properties, Eur. Polym. J., 35 (2), 253–271.

[50] Pospísil, J., Horák, Z., Kruliš, Z., Nešpůrek, S., and Kuroda, S.I., 1999, Degradation and aging of polymer blends I. Thermomechanical and thermal degradation, Polym. Degrad. Stab., 65 (3), 405–414.

[51] Ibrahim, A., and Dahlan, M., 1998, Thermoplastic natural rubber blends, Prog. Polym. Sci., 23 (4), 665–706.

[52] Jing, F., and Hillmyer, M.A., 2008, A bifunctional monomer derived from lactide for toughening polylactide, J. Am. Chem. Soc., 130 (42), 13826–13827.

[53] Liu, H., Chen, F., Liu, B., Estep, G., and Zhang, J., 2010, Super toughened poly(lactic acid) ternary blends by simultaneous dynamic vulcanization and interfacial compatibilization, Macromolecules, 43 (14), 6058–6066.

[54] Anderson, K.S., Lim, S.H., and Hillmyer, M.A., 2003, Toughening of polylactide by melt blending with linear low-density polyethylene, J. Appl. Polym. Sci., 89 (14), 3757–3768.

[55] Rasal, R.M., and Hirt, D.E., 2009, Toughness decrease of PLA-PHBHHx blend films upon surface-confined photopolymerization, J. Biomed. Mater. Res., Part A, 88 (4), 1079–1086.

[56] Ishida, S., Nagasaki, R., Chino, K., Dong, T., and Inoue, Y., 2009, Toughening of poly(L-lactide) by melt blending with rubbers, J. Appl. Polym. Sci., 113 (1), 558–566.

[57] Okamoto, H., Nakano, M., and Usuki, A., 2006, “Toughening of polylactide by melt blending with natural rubber(2)-effect of PLA crystallization” in Polymer Preprints, Japan, Vol. 55, Society of Polymer Science, Japan, 2256.

[58] Su, S.I., Jin, L.Q., Gu, Y.A., and Yang, B., 2008, Toughening PLA with E-MA-GMA, Polym. Mater. Sci. Eng., 24 (4), 53–57.

[59] Schreck, K.M., and Hillmyer, M.A., 2007, Block copolymers and melt blends of polylactide with NodaxTM microbial polyesters: Preparation and mechanical properties, J. Biotechnol., 132 (3), 287–295.

[60] Balakrishnan, H., Hassan, A., Wahit, M.U., Yussuf, A.A., and Abdul Razak, S.B., 2010, Novel toughened polylactic acid nanocomposite: Mechanical, thermal and morphological properties, Mater. Des., 31 (7), 3289–3298.

[61] Balakrishnan, H., Hassan, A., and Wahit, M.U., 2010, Mechanical, thermal, and morphological properties of polylactic acid/linear low density polyethylene blends, J. Elastomers Plast., 42 (3), 223–239.

[62] Balakrishnan, H., Hassan, A., Imran, M., and Wahit, M.U., 2012, Toughening of polylactic acid nanocomposites: A short review, Polym.-Plast. Technol. Eng., 51 (2), 175–192.

[63] Jiang, L., Wolcott, M.P., and Zhang, J., 2005, Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends, Biomacromolecules, 7 (1), 199–207.

[64] Li, Y., and Shimizu, H., 2009, Improvement in toughness of poly(L-lactide) (PLLA) through reactive blending with acrylonitrile-butadiene-styrene copolymer (ABS): Morphology and properties, Eur. Polym. J., 45 (3), 738–746.

[65] McDonald, P.F., Geever, L.M., Lyons, J.G., and Higginbotham, C.L., 2010, Physical and mechanical properties of blends based on poly (DL-lactide), poly (L-lactide-glycolide) and poly (ϵ-caprolactone), Polym.-Plast. Technol. Eng., 49 (7), 678–687.

[66] Odent, J., Raquez, J.M., Duquesne, E., and Dubois, P., 2012, Random aliphatic copolyesters as new biodegradable impact modifiers for polylactide materials, Eur. Polym. J., 48 (2), 331–340.

[67] Theryo, G., Jing, F., Pitet, L.M., and Hillmyer, M.A., 2010, Tough polylactide graft copolymers, Macromolecules, 43 (18), 7394–7397.

[68] Hashima, K., Nishitsuji, S., and Inoue, T., 2010, Structure-properties of super-tough PLA alloy with excellent heat resistance, Polymer, 51 (17), 3934–3939.

[69] Ma, P., Hristova-Bogaerds, D.G., Goossens, J.G.P., Spoelstra, A.B., Zhang, Y., and Lemstra, P.J., 2012, Toughening of poly(lactic acid) by ethylene-co-vinyl acetate copolymer with different vinyl acetate contents, Eur. Polym. J., 48 (1), 146–154.

[70] Anderson, K.S., Schreck, K.M., and Hillmyer, M.A., 2008, Toughening polylactide, Polym. Rev., 48 (1), 85–108.

[71] Liu, H., and Zhang, J., 2011, Research progress in toughening modification of poly(lactic acid), J. Polym. Sci., Part B: Polym. Phys., 49 (15), 1051–1083.

[72] Xu, K., Yan, C., Du, C., Xu, Y., Li, B., and Liu, L., 2023, Preparation and mechanism of toughened and flame-retardant bio-based polylactic acid composites, Polymers, 15 (2), 300.

[73] Trivedi, A.K., Gupta, M., and Singh, H., 2023, PLA based biocomposites for sustainable products: A review, Adv. Ind. Eng. Polym. Res., In Press, Corrected Proof.

[74] Ramezani Dana, H., and Ebrahimi, F., 2023, Synthesis, properties, and applications of polylactic acid‐based polymers, Polym. Eng. Sci., 63 (1), 22–43.

[75] Li, X., Lin, Y., Liu, M., Meng, L., and Li, C., 2023, A review of research and application of polylactic acid composites, J. Appl. Polym. Sci., 140 (7), e53477.

[76] Bikiaris, N.D., Koumentakou, I., Samiotaki, C., Meimaroglou, D., Varytimidou, D., Karatza, A., Kalantzis, Z., Roussou, M., Bikiaris, R.D., and Papageorgiou, G.Z., 2023, Recent advances in the investigation of poly(lactic acid) (PLA) nanocomposites: Incorporation of various nanofillers and their properties and applications, Polymers, 15 (5), 1196.

[77] Aliotta, L., Gigante, V., Geerinck, R., Coltelli, M.B., and Lazzeri, A., 2023, Micromechanical analysis and fracture mechanics of poly(lactic acid) (PLA)/polycaprolactone (PCL) binary blends, Polym. Test., 121, 107984.

[78] Baker, C.S.L., Gelling, I.R., and Newell, R., 1985, Epoxidized natural rubber, Rubber Chem. Technol., 58 (1), 67–85.

[79] Carreau, P.J., Bousmina, M., and Ajji, A., 1993, “Rheological Properties of Blends: Facts and Challenges” in Progress in Pacific Polymer Science 3, Springer, Berlin Heidelberg.

[80] Aubin, M., and Prud'Homme, R.E., 1988, Tg-Composition analysis of miscible polymer blends, Polym. Eng. Sci., 28 (21), 1355–1361.

[81] Campbell, J.A., Goodwin, A.A., Mercer, F.W., and Reddy, V., 1997, Studies on a miscible polyimide blend, High Perform. Polym., 9 (3), 263–279.

[82] Zhang, W., Chen, L., and Zhang, Y., 2009, Surprising shape-memory effect of polylactide resulted from toughening by polyamide elastomer, Polymer, 50 (5), 1311–1315.

[83] Suksut, B., and Deeprasertkul, C., 2011, Effect of nucleating agents on physical properties of poly(lactic acid) and its blend with natural rubber, J. Polym. Environ., 19 (1), 288–296.

[84] Bitinis, N., Verdejo, R., Cassagnau, P., and Lopez-Manchado, M.A., 2011, Structure and properties of polylactide/natural rubber blends, Mater. Chem. Phys., 129 (3), 823–831.

[85] Jaratrotkamjorn, R., Khaokong, C., and Tanrattanakul, V., 2011, Toughness enhancement of poly(lactic acid) by melt blending with natural rubber, J. Appl. Polym. Sci., 124 (6), 5027–5036.

[86] Kowalczyk, M., and Piorkowska, E., 2012, Mechanisms of plastic deformation in biodegradable polylactide/poly(1,4-cis-isoprene) blends, J. Appl. Polym. Sci., 124 (6), 4579–4589.

[87] Petchwattana, N., Covavisaruch, S., and Euapanthasate, N., 2012, Utilization of ultrafine acrylate rubber particles as a toughening agent for poly(lactic acid), Mater. Sci. Eng., A, 532, 64–70.

[88] Liu, H., Guo, L., Guo, X., and Zhang, J., 2012, Effects of reactive blending temperature on impact toughness of poly(lactic acid) ternary blends, Polymer, 53 (2), 272–276.

[89] Bijarimi, M., Ahmad, S., and Rasid, R., 2014, Melt blends of poly (lactic acid)/natural rubber and liquid epoxidised natural rubber, J. Rubber Res., 17 (2), 57–68.

[90] Argon, A.S., and Cohen, R.E., 2003, Toughenability of polymers, Polymer, 44 (19), 6013–6032.

[91] Borggreve, R.J.M., Gaymans, R.J., and Eichenwald, H.M., 1989, Impact behaviour of nylon-rubber blends: 6. Influence of structure on voiding processes; toughening mechanism, Polymer, 30 (1), 78–83.

[92] Noda, I., Satkowski, M.M., Dowrey, A.E., and Marcott, C., 2004, Polymer alloys of Nodax copolymers and poly(lactic acid), Macromol. Biosci., 4 (3), 269–275.

[93] Todo, M., Park, S.D., Takayama, T., and Arakawa, K., 2007, Fracture micromechanisms of bioabsorbable PLLA/PCL polymer blends, Eng. Fract. Mech., 74 (12), 1872–1883.

[94] Candau, N., Albiter, N.L., Coll, P.R., and Maspoch, M.L., 2022, Dynamically vulcanized polylactic acid/natural rubber/waste rubber blends: Effect of the crosslinking agent on the morphology and tensile properties, J. Appl. Polym. Sci., 139 (41), e53001.

[95] Chanthot, P., Kerddonfag, N., and Pattamaprom, C., 2022, The influence of peroxide on bubble stability and rheological properties of biobased poly(lactic acid)/natural rubber blown films, Chin. J. Polym. Sci., 40 (2), 197–207.

[96] Fang, H., Zhang, L., Chen, A., and Wu, F., 2022, Improvement of mechanical property for PLA/TPU blend by adding PLA-TPU copolymers prepared via in situ ring-opening polymerization, Polymers, 14 (8), 1530.

[97] Terzopoulou, Z., Zamboulis, A., Papadopoulos, L., Grigora, M.E., Tsongas, K., Tzetzis, D., Bikiaris, D.N., and Papageorgiou, G.Z., 2022, Blending PLA with polyesters based on 2,5-furan dicarboxylic acid: Evaluation of physicochemical and nanomechanical properties, Polymers, 14 (21), 4725.

[98] Wongwat, S., Yoksan, R., and Hedenqvist, M.S., 2022, Bio-based thermoplastic natural rubber based on poly(lactic acid)/thermoplastic starch/calcium carbonate nanocomposites, Int. J. Biol. Macromol., 208, 973–982.

[99] Zhang, X., Lu, X., Huang, D., Ding, Y., Li, J., Dai, Z., Sun, L., Li, J., Wei, X., Wei, J., Li, Y., and Zhang, K., 2022, Ultra-tough polylactide/bromobutyl rubber-based ionomer blends via reactive blending strategy, Front. Chem., 10, 923174.

[100] Fekete, I., Ronkay, F., and Lendvai, L., 2021, Highly toughened blends of poly(lactic acid) (PLA) and natural rubber (NR) for FDM-based 3D printing applications: The effect of composition and infill pattern, Polym. Test., 99, 107205.

[101] Musa, L., Krishna Kumar, N., Abd Rahim, S.Z., Mohamad Rasidi, M.S., Watson Rennie, A.E., Rahman, R., Yousefi Kanani, A., and Azmi, A.A., 2022, A review on the potential of polylactic acid based thermoplastic elastomer as filament material for fused deposition modelling, J. Mater. Res. Technol., 20, 2841–2858.

[102] Nicholson, J.W., 2006, The Chemistry of Polymers, 3rd Ed., The Royal Society of Chemistry, Cambridge, UK.

[103] Zhang, J.F., and Sun, X., 2005, “Poly(lactic acid)-based bioplastics” in Biodegradable Polymers for Industrial Applications, Ed. Smith, R., Woodhead Publishing, Boca Raton, US, 251–288.

[104] Jacobsen, S., and Fritz, H.G., 1999, Plasticizing polylactide - the effect of different plasticizers on the mechanical properties, Polym. Eng. Sci., 39 (7), 1303–1310.

[105] Martin, O., and Avérous, L., 2001, Poly(lactic acid): Plasticization and properties of biodegradable multiphase systems, Polymer, 42 (14), 6209–6219.

[106] Labrecque, L.V., Kumar, R.A., Davé, V., Gross, R.A., and McCarthy, S.P., 1997, Citrate esters as plasticizers for poly(lactic acid), J. Appl. Polym. Sci., 66 (8), 1507–1513.

[107] Ljungberg, N., and Wesslén, B., 2002, The effects of plasticizers on the dynamic mechanical and thermal properties of poly(lactic acid), J. Appl. Polym. Sci., 86 (5), 1227–1234.

[108] Baiardo, M., Frisoni, G., Scandola, M., Rimelen, M., Lips, D., Ruffieux, K., and Wintermantel, E., 2003, Thermal and mechanical properties of plasticized poly(L-lactic acid), J. Appl. Polym. Sci., 90 (7), 1731–1738.

[109] Pillin, I., Montrelay, N., and Grohens, Y., 2006, Thermo-mechanical characterization of plasticized PLA: Is the miscibility the only significant factor?, Polymer, 47 (13), 4676–4682.

[110] Murariu, M., Da Silva Ferreira, A., Pluta, M., Bonnaud, L., Alexandre, M., and Dubois, P., 2008, Polylactide (PLA)–CaSO4 composites toughened with low molecular weight and polymeric ester-like plasticizers and related performances, Eur. Polym. J., 44 (11), 3842–3852.

[111] Oksman, K., Skrifvars, M., and Selin, J.F., 2003, Natural fibres as reinforcement in polylactic acid (PLA) composites, Compos. Sci. Technol., 63 (9), 1317–1324.

[112] Oksman, K., Mathew, A.P., Bondeson, D., and Kvien, I., 2006, Manufacturing process of cellulose whiskers/polylactic acid nanocomposites, Compos. Sci. Technol., 66 (15), 2776–2784.

[113] Hu, Y., Hu, Y.S., Topolkaraev, V., Hiltner, A., and Baer, E., 2003, Crystallization and phase separation in blends of high stereoregular poly(lactide) with poly(ethylene glycol), Polymer, 44 (19), 5681–5689.

[114] Martino, V.P., Ruseckaite, R.A., and Jiménez, A., 2009, Ageing of poly(lactic acid) films plasticized with commercial polyadipates, Polym. Int., 58 (4), 437–444.

[115] Okamoto, K., Ichikawa, T., Yokohara, T., and Yamaguchi, M., 2009, Miscibility, mechanical and thermal properties of poly(lactic acid)/polyester-diol blends, Eur. Polym. J., 45 (8), 2304–2312.

[116] Lemmouchi, Y., Murariu, M., Dos Santos, A.M., Amass, A.J., Schacht, E., and Dubois, P., 2009, Plasticization of poly(lactide) with blends of tributyl citrate and low molecular weight poly(D,L-lactide)-b-poly(ethylene glycol) copolymers, Eur. Polym. J., 45 (10), 2839–2848.

[117] Hughes, J., Thomas, R., Byun, Y., and Whiteside, S., 2012, Improved flexibility of thermally stable poly-lactic acid (PLA), Carbohydr. Polym., 88 (1), 165–172.

[118] Hassouna, F., Raquez, J.M., Addiego, F., Dubois, P., Toniazzo, V., and Ruch, D., 2011, New approach on the development of plasticized polylactide (PLA): Grafting of poly(ethylene glycol) (PEG) via reactive extrusion, Eur. Polym. J., 47 (11), 2134–2144.

[119] Kim, D.Y., Lee, J.B., Lee, D.Y., and Seo, K.H., 2020, Plasticization effect of poly(lactic acid) in the poly(butylene adipate–co–terephthalate) blown film for tear resistance improvement, Polymers, 12 (9), 1904.

[120] Awale, R.J., Ali, F.B., Azmi, A.S., Puad, N.I.M., Anuar, H., and Hassan, A., 2018, Enhanced Flexibility of Biodegradable Polylactic Acid/Starch Blends Using Epoxidized Palm Oil as Plasticizer, Polymers, 10 (9), 977.

[121] Gzyra-Jagieła, K., Sulak, K., Draczyński, Z., Podzimek, S., Gałecki, S., Jagodzińska, S., Borkowski, D., 2021, Modification of Poly(lactic acid) by the Plasticization for Application in the Packaging Industry.Polymers. 13 (21),3651

[122] Tábi, T., Ageyeva, T., and Kovács, J.G., 2022, The influence of nucleating agents, plasticizers, and molding conditions on the properties of injection molded PLA products, Mater. Today Commun., 32, 103936.



DOI: https://doi.org/10.22146/ijc.80830

Article Metrics

Abstract views : 2596 | views : 1323


Copyright (c) 2023 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.