Titanium Dioxide-Curcumin Composite Materials from Aceh Curcuma Natural Source and Their Evaluation as Antiradical Agents Through In Vitro Study

https://doi.org/10.22146/ijc.80766

Indriana Kartini(1*), Tutik Dwi Wahyuningsih(2), Adhi Dwi Hatmanto(3), Vina Aida Roza(4), Yehezkiel Steven Kurniawan(5)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia; Indonesia Natural Dye Institute (INDI), Integrated Research and Testing Laboratory (LPPT), Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia; Indonesia Natural Dye Institute (INDI), Integrated Research and Testing Laboratory (LPPT), Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia; Indonesia Natural Dye Institute (INDI), Integrated Research and Testing Laboratory (LPPT), Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(*) Corresponding Author

Abstract


The usage of antiradical agents is pivotal for suppressing the negative effects of free radicals on human health. Curcumin, a well-known natural antiradical agent, suffers from its low stability and high price, thus, limiting its potential in real applications. In this work, we carried out the impregnation of encapsulated curcumin from Aceh curcuma source on commercial titanium dioxide. The isolation of curcumin was performed using a simple maceration method, while the encapsulation process was done employing carboxymethylcellulose and maltodextrin to give ethanol-curcumin and triacetin-curcumin powders in 30.35% and 37.21% yield, respectively. The composite materials contained curcumin in a range of 0.016–0.374 mg/g. The characterization data revealed that the curcumin was located on the surface of titanium dioxide through hydrogen bonds. The in vitro DPPH assay of the titanium dioxide-curcumin composite material exhibited 39.61 ± 1.36 to 79.70 ± 1.33% antiradical activity which was higher than titanium dioxide (31.78 ± 1.48%). Furthermore, the composite material also gave higher antiradical activity than its curcumin sources, i.e., Aceh curcuma (75.12 ± 1.79%), ethanol-curcumin (56.66 ± 0.25%), and triacetin-curcumin (63.58 ± 0.20%) demonstrating a synergistic antiradical effect of titanium dioxide and curcumin as the antiradical agents. These findings demonstrate the importance of the impregnation and encapsulation of curcumin in composite materials for antiradical applications.

Keywords


titanium dioxide; curcumin; Aceh curcuma; antiradical; composite material

Full Text:

Full Text PDF


References

[1] Kupaeva, N.V., and Kotenkova, E.A., 2021, Current view on the assessment of antioxidant and antiradical activities: A mini review, IOP Conf. Ser.: Earth Environ. Sci., 854, 012048.

[2] Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., Gargiulo, G., Testa, G., Cacciatore, F., Bonaduce, D., and Abete, P., 2018, Oxidative stress, aging, and diseases, Clin. Interventions Aging, 13, 757–772.

[3] Tirzitis, G., and Bartosz, G., 2010, Determination of antiradical and antioxidant activity: Basic principles and new insights, Acta Biochim. Pol., 57 (2), 139–142.

[4] Gulcin, I., 2020, Antioxidants and antioxidant methods: An updated overview, Arch. Toxicol., 94 (3), 651–715.

[5] Xu, D.P., Li, Y., Meng, X., Zhou, T., Zhou, Y., Zheng, J., Zhang, J.J., and Li, H.B., 2017, Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources, Int. J. Mol. Sci., 18 (1), 96.

[6] Hewlings, S.J., and Kalman, D.S., 2017, Curcumin: A review of its effects on human health, Foods, 6 (10), 92.

[7] Fuloria, S., Mehta, J., Chandel, A., Sekar, M., Mat Rani, N.N.I., Begum, M.Y., Subramaniyan, V., Chidambaram, K., Thangavelu, L., Nordin, R., Wu, Y.S., Sathasivam, K.V., Lum, P.T., Meenakshi, D.U., Kumarasamy, V., Azad, A.K., and Fuloria, N.K., 2022, A comprehensive review on the therapeutic potential of Curcuma longa Linn. in relation to its major active constituent curcumin, Front. Pharmacol., 13, 820806.

[8] Rahman, M.S., Hasan, M.S., Nitai, A.S., Nam, S., Karmakar, A.K., Ahsan, M.S., Shiddiky, M.J.A., and Ahmed, M.B., 2021, Recent developments of carboxymethyl cellulose, Polymers, 13 (8), 1345.

[9] Rahman Mazumder, M.A., and Ranganathan, T.V., 2020, Encapsulation of isoflavone with milk, maltodextrin and gum acacia improves its stability, Curr. Res. Food Sci., 2, 77–83.

[10] Zorzenon, M.R.T., Formigoni, M., da Silva, S.B., Hodas, F., Piovan, S., Ciotta, S.R., Jansen, C.A., Dacome, A.S., Pilau, E.J., Mareze-Costa, C.E., Milani, P.G., and Costa, S.C., 2020, Spray drying encapsulation of stevia extract with maltodextrin and evaluation of the physicochemical and functional properties of produced powders, J. Food Sci., 85 (10), 3590–3600.

[11] Tomé Constantino, A.B., and Garcia-Rojas, E.E., 2022, Microencapsulation of betanin by complex coacervation of carboxymethylcellulose and amaranth protein isolate for application in edible gelatin films, Food Hydrocolloids, 133, 107956.

[12] Negrão-Murakami, A.N., Nunes, G.L., Pinto, S.S., Murakami, F.S., Amante, E.R., Petrus, J.C.C., Prudêncio, E.S., and Amboni, R.D.M.C., 2017, Influence of DE-value of maltodextrin on the physicochemical properties, antioxidant activity, and storage stability of spray dried concentrated mate (Ilex paraguariensis A. St. Hil.), LWT-Food Sci. Technol., 79, 561–567.

[13] Ung, V.Y.L., Foshaug, R.R., MacFarlane, S.M., Churchill, T.A., Doyle, J.S.G., Sydora, B.C., and Fedorak, R.N., 2010, Oral administration of curcumin emulsified in carboxymethyl cellulose has a potent anti-inflammatory effect in the IL-10 gene-deficient mouse model of IBD, Dig. Dis. Sci., 55 (5), 1272–1277.

[14] Goëlo, V., Chaumun, M., Gonçalves, A., Estevinho, B.N., and Rocha, F., 2020, Polysaccharide-based delivery systems for curcumin and turmeric powder encapsulation using a spray-drying process, Powder Technol., 370, 137–146.

[15] Bourbon, A.I., Costa, M.J., Maciel, L.C., Pastrana, L., Vicente, A.A., and Cerqueira, M.A., 2021, Active carboxymethylcellulose-based edible films: Influence of free and encapsulated curcumin on films’ properties, Foods, 10 (7), 1512.

[16] Rezaei, M., Hassanzadeh Nemati, N., Mehrabani, D., and Komeili, A., 2022, Characterization of sodium carboxymethyl cellulose/calcium alginate scaffold loaded with curcumin in skin tissue engineering, J. Appl. Polym. Sci., 139 (22), 52271.

[17] Ashraf, H., Butt, M.S., Ul-Haq, I., Nadeem, M., Aadil, R.M., Rusu, A.V., and Trif, M., 2022, Microencapsulated curcumin from Curcuma longa modulates diet-induced hypercholesterolemia in Sprague Dawley rats, Front. Nutr., 9, 1026890.

[18] Madunsaka, N., de Silva, K.M.N., and Amaratunga, G., 2015, A curcumin activated carboxymethyl cellulose–montmorillonite clay nanocomposite having enhanced curcumin release in aqueous media, Carbohydr. Polym., 134, 695–699.

[19] Basso, A., and Serban, S., 2019, Industrial applications of immobilized enzymes–A review, Mol. Catal., 479, 110607.

[20] Sanches, P.L., Geaquinto, L.R.O., Cruz, R., Schuck, D.C., Lorencini, M., Granjeiro, J.M., and Ribeiro, A.R.L., 2020, Toxicity evaluation of TiO2 nanoparticles on the 3D skin model: A systematic review, Front. Bioeng. Biotechnol., 8, 00575.

[21] Lim, J., Bokare, A.D., and Choi, W., 2017, Visible light sensitization of TiO2 nanoparticles by a dietary pigment, curcumin, for environmental photochemical transformations, RSC Adv., 7 (52), 32488–32495.

[22] Kurniawan, Y.S., Anggraeni, K., Indrawati, R., and Yuliati, L., 2019, Selective betalain impregnation from red amaranth extract onto titanium dioxide nanoparticles, AIP Conf. Proc., 2175, 020049.

[23] Yan, Z., He, Z., Li, M., Zhang, L., Luo, Y., He, J., Chen, Y., and Wang, J., 2020, Curcumin doped SiO2/TiO2 nanocomposites for enhanced photocatalytic reduction of Cr(VI) under visible light, Catalysts, 10 (8), 942.

[24] Sherin, S., Balachandran, S., and Abraham, A., 2020, Curcumin incorporated titanium dioxide nanoparticles as MRI contrasting agent for early diagnosis of atherosclerosis- rat model, Vet. Anim. Sci., 10, 100090.

[25] Mollaei, M., Hashemi, M., Siasi, E., Marndi, S.J., and Entezari, M., 2020, Effect of TiO2 nanoparticles and curcumin on sperm parameters in response to temperature-induced stress in scrotal hyperthermia rats: Role of miR455, J. Hum. Genet. Genomics, 4 (2), e122290.

[26] Kurniawan, Y.S., Anggraeni, K., Indrawati, R., and Yuliati, L., 2020, Functionalization of titanium dioxide through dye-sensitizing method utilizing red amaranth extract for phenol photodegradation, IOP Conf. Ser.: Mater. Sci. Eng., 902, 012029.

[27] Surojanametakul, V., Satmalee, P., Saengprakai, J., Siliwan, D., and Wattanasirithamn, L., 2010, Preparation of curcuminoid powder from turmeric root (Curcuma longa Linn) for food ingredient use, Kasetsart J.: Nat. Sci., 44 (1), 123–130.

[28] Jagannathan, R., Abraham, P.M., and Poddar, P., 2012, Temperature-dependent spectroscopic evidences of curcumin in aqueous medium: A mechanistic study of its solubility and stability, J. Phys. Chem. B, 116 (50), 14533–14540.

[29] Kedare, S.B., and Singh, R.P., 2011, Genesis and development of DPPH method of antioxidant assay, J. Food Sci. Technol., 48 (4), 412–422.

[30] Degot, P., Huber, V., Hofmann, E., Hahn, M., Touraud, D., and Kunz, W., 2021, Solubilization and extraction of curcumin from Curcuma longa using green, sustainable, and food-approved surfactant-free microemulsions, Food Chem., 336, 127660.

[31] Kushwaha, P., Shukla, B., Dwivedi, J., and Saxena, S., 2021, Validated high-performance thin-layer chromatographic analysis of curcumin in the methanolic fraction of Curcuma longa L. rhizomes, Future J. Pharm. Sci., 7 (1), 178.

[32] Hope-Roberts, M., and Horobin, R.W., 2017, A review of curcumin as a biological stain and as a self-visualizing pharmaceutical agent, Biotech. Histochem., 92 (5), 315–323.

[33] Mottahedin, P., Haghighi Asl, A., and Khajenoori, M., 2016, Extraction of curcumin and essential oil from Curcuma longa L. by subcritical water via response surface methodology: SWE of curcumin and essential oil via RSM, J. Food Process. Preserv., 41 (4), e13095.

[34] Wahyuni, S., Kunarti, E.S., Swasono, R.T., and Kartini, I., 2018, Characterization and photocatalytic activity of TiO2(rod)-SiO2-polyaniline nanocomposite, Indones. J. Chem., 18 (2), 321–330.

[35] Chen, X., Zou, L.Q., Niu, J., Liu, W., Peng, S.F., and Liu, C.M., 2015, The stability, sustained release and cellular antioxidant activity of curcumin nanoliposomes, Molecules, 20 (8), 14293–14311.

[36] Cocean, A., Cocean, I., Cimpoesu, N., Cocean, G., Cimpoesu, R., Postolachi, C., Popescu, V., and Gurlui, S., 2021, Laser induced method to produce curcuminoid-silanol thin films to transdermal patches using irradiation of turmeric target, Appl. Sci., 11 (9), 4030.

[37] Kho, K., Nugroho, D., and Sugih, A.K., 2018, Preparation and characterization of highly water soluble curcumin – dextrose cocrystal, J. Pure Appl. Chem. Res., 7 (2), 140–148.

[38] Sethi, D., and Sakthivel, R., 2017, ZnO/TiO2 composites for photocatalytic inactivation of Escherichia coli, J. Photochem. Photobiol., B, 168, 117–123.

[39] Jakubczyk, K., Drużga, A., Katarzyna, J., and Skonieczna-Żydecka, K., 2020, Antioxidant potential of curcumin–A meta-analysis of randomized clinical trials, Antioxidants, 9 (11), 1092.



DOI: https://doi.org/10.22146/ijc.80766

Article Metrics

Abstract views : 1039 | views : 430


Copyright (c) 2023 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.