Enhancement of the Silicon Nanocrystals’ Electronic Structure within a Silicon Carbide Matrix

https://doi.org/10.22146/ijc.79864

Soni Prayogi(1*)

(1) Department of Electrical Engineering, Pertamina University, Jl. Teuku Nyak Arief, Jakarta 12220, Indonesia; Electronics Research Center, National Innovation Research Agency, Jl. M.H. Thamrin No. 8, Jakarta 10340, Indonesia
(*) Corresponding Author

Abstract


Using plasma-enhanced chemical vapor deposition (PECVD), a mixed gas of silane (SiH4) and methane (CH4) was diluted with hydrogen (H2) to produce thin films of silicon nanocrystals embedded in a silicon carbide (SiC) matrix. This method prevents the co-deposition of SiH and SiC from high-temperature annealing procedures. This study experimentally explores the improvement of the electronic structure by adjusting two processing parameters according to classical nucleation theory (ratio of SiH4 to CH4 and working gas pressure). The deposited films were examined using ellipsometry spectroscopy, X-ray diffraction, scanning electron microscopy, atomic force microscopy, and photoluminescence to determine grain size, crystal volume fraction, topography, and bond configurations. The results show that increasing the working gas pressure can increase the density of SiC, while increasing the ratio of SiH4 to CH4 can only produce larger grain sizes. This is consistent with how SiC works and grows. Without using a high-temperature annealing procedure, this technique can improve the electrical structure of SiC contained in the SiC matrix formed by PECVD.

Keywords


methane; silane; hydrogen; silicon carbide; PECVD

Full Text:

Full Text PDF


References

[1] Meng, F., Shen, L., Shi, J., Zhang, L., Liu, J, Liu, Y., and Liu, Z., 2015, Role of the buffer at the interface of intrinsic a-Si:H and p-type a-Si:H on amorphous/crystalline silicon heterojunction solar cells, Appl. Phys. Lett., 107, 223901.

[2] Zahoor, R., Jalil, A., Ilyas, S.Z., Ahmed, S., and Hassan, A., 2021, Optoelectronic and solar cell applications of ZnO nanostructures, Results Surf. Interfaces, 2, 100003.

[3] Baskar, S., and Pratibha, N.R., 2016, Synthesis and characterization of silicon nanocrystals in SiC matrix using sputtering and PECVD techniques, Mater. Today: Proc., 3 (6), 2121–2131.

[4] Lükermann, F., Heinzmann, U., and Stiebig, H., 2012, Plasmon enhanced resonant defect absorption in thin a-Si:H n-i-p devices, Appl. Phys. Lett., 100 (25), 253907.

[5] Wen, X., Chen, C., Lu, S., Li, K., Kondrotas, R., Zhao, Y., Chen, W., Gao, L., Wang, C., Zhang, J., Niu, G., and Tang, J., 2018, Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency, Nat. Commun., 9 (1), 2179.

[6] Huang, X., Wu, Q., Dai, R., Ning, J., Zhang, L., Wang, W., Xue, S., Yan, J., Zhang, F., and Zhang, W., 2022, A density functional study of the structural, electronic, optical and lattice dynamical properties of AgGaS2, Results Phys., 35, 105309.

[7] Kim, J., Hong, Z., Li, G., Song, T., Chey, J., Lee, Y.S., You, J., Chen, C.C., Sadana, D.K., and Yang, Y., 2015, 10.5% efficient polymer and amorphous silicon hybrid tandem photovoltaic cell, Nat Commun., 6 (1), 6391.

[8] Pandey, A., Bhattacharya, S., Panigrahi, J., Mandal, S., and Komarala, V.K., 2022, Effect of gas flow rate in PECVD of amorphous silicon thin films for interface passivation of silicon heterojunction solar cells, Phys. Status Solidi A, 219 (16), 2200183.

[9] Prayogi, S., Cahyono, Y., and Darminto, D., 2022, Electronic structure analysis of a-Si:H p-i1-i2-n solar cells using ellipsometry spectroscopy, Opt. Quantum Electron., 54 (1), 732.

[10] Prayogi, S., Ayunis, A., Kresna, K., Cahyono, Y., Akidah, A., and Darminto, D., 2017, Analysis of thin layer optical properties of A-Si:H p-type doping CH4 and p-type without CH4 is deposited PECVD systems, J. Phys.: Conf. Ser., 853 (1), 012032.

[11] Beake, B.D., McMaster, S.J., and Liskiewicz, T.W., 2022, Contact size effects on the friction and wear of amorphous carbon films, Appl. Surf. Sci. Adv., 9, 100248.

[12] Joo, K.N., and Park, H.M., 2022, Recent progress on optical tomographic technology for measurements and inspections of film structures, Micromachines, 13 (7), 1074.

[13] Buriak, J.M., and Sikder, M.D.H., 2015, From molecules to surfaces: Radical-based mechanisms of Si–S and Si–Se bond formation on silicon, J. Am. Chem. Soc., 137 (3), 9730–9738.

[14] Prayogi, S., Asih, R., Priyanto, B., Baqiya, M.A., Naradipa, M.A., Cahyono, Y., Darminto, D., and Rusydi, A., 2022, Observation of resonant exciton and correlated plasmon yielding correlated plexciton in amorphous silicon with various hydrogen content, Sci. Rep., 12 (1), 21497.

[15] Yokosuk, M.O., Tiwald, T.E., Saunders, D.L., Blake, T.A., and Myers, T.L., 2021, Combining spectroscopic techniques to determine the optical constants of powdered lactose, Appl. Opt., 60 (8), 2412–2421.

[16] Prayogi, S., Cahyono, Y., Hamdani, D., and Darminto, D., 2022, Effect of active layer thickness on the performance of amorphous hydrogenated silicon solar cells, Eng. Appl. Sci. Res., 49 (2), 201–208.

[17] Prayogi, S., Cahyono, Y., Iqballudin, I., Stchakovsky, M., and Darminto, D., 2021, The effect of adding an active layer to the structure of a-Si: H solar cells on the efficiency using RF-PECVD, J. Mater. Sci.: Mater. Electron., 32 (6), 7609–7618.

[18] Abubakar, S., Ying Chyi, J.L., Tan, S.T., Sagadevan, S., Talib, Z.A., and Paiman, S., 2021, Nanoscale domain imaging and the electromechanical response of zinc oxide nanorod arrays synthesized on different substrates, J. Mater. Res. Technol., 14, 2451–2463.

[19] Bakonyi, I., 2021, Accounting for the resistivity contribution of grain boundaries in metals: Critical analysis of reported experimental and theoretical data for Ni and Cu, Eur. Phys. J. Plus, 136 (4), 410.

[20] Santoso, I., Gogoi, P.K., Su, H.B., Huang, H., Lu, Y., Qi, D., Chen, W., Majidi, M.A., Feng, Y.P., Wee, A.T.S., Loh, K.P., Venkatesan, T., Saichu, R.P., Goos, A., Kotlov, A., Rübhausen, M., and Rusydi, A., 2011, Observation of room-temperature high-energy resonant excitonic effects in graphene, Phys. Rev. B, 84 (8), 081403.

[21] Yeo, L.H., Srivastava, A., Majidi, M.A., Sutarto, R., He, F., Poh, S.M., Diao, C., Yu, X., Motapothula, M., Saha, S., Ojha, S., Kanjilal, D., Trevisanutto, P.E., Breese, M.B.H., Venkatesan, T., and Rusydi, A., 2015, Anomalous spectral-weight transfers unraveling oxygen screening and electronic correlations in the insulator-metal transition of VO2, Phys. Rev. B, 91 (8), 081112.

[22] Ren, N., Zhu, J., Shi, P., Shan, Q., Li, T., Wei, C., Zhao, Y. and Zhang, X., 2018, Controlling performance of a-Si:H solar cell with SnO2:F front electrode by introducing dual p-layers with p-a-SiOx:H/p-nc-SiOx:H nanostructure, Sol. Energy, 171, 907–913.

[23] Forouhi, A.R., and Bloomer, I., 2019, New dispersion equations for insulators and semiconductors valid throughout radio-waves to extreme ultraviolet spectral range, J. Phys. Commun., 3 (3), 035022.

[24] Bohórquez, C., Bakkali, H., Delgado, J.J., Blanco, E., Herrera, M., and Domínguez, M., 2022, Spectroscopic ellipsometry study on tuning the electrical and optical properties of Zr-Doped ZnO thin films grown by atomic layer deposition, ACS Appl. Electron. Mater., 4 (3), 925–935.

[25] Chakraborty, M., Banerjee, A., and Das, D., 2014, Spectroscopic studies on nanocrystalline silicon thin films prepared from H2-diluted SiH4-plasma in inductively coupled low pressure RF PECVD, Phys. E, 61, 95–100.

[26] Mateo, D., Cerrillo, J.L., Durini, S., and Gascon, J., 2021, Fundamentals and applications of photo-thermal catalysis, Chem. Soc. Rev., 50 (3), 2173–2210.

[27] Mortelliti, M.J., Wang, A.N., and Dempsey, J.L., 2021, Interfacial electron transfer through ultrathin ALD TiOx layers: A comparative study of TiO2/TiOx and SnO2/TiOx core/shell nanocrystals, J. Phys. Chem. C, 125 (23), 12937–12959.

[28] Prayogi, S., Cahyono, Y., and Darminto, D., 2021, Fabrication of solar cells based on a-Si: H layer of intrinsic double (P-ix-iy-N) with PECVD and efficiency analysis, J. Phys.: Conf. Ser., 1951 (1), 012015.

[29] Gueye, M.N., Carella, A., Faure-Vincent, J., Demadrille, R., and Simonato, J.P., 2020, Progress in understanding structure and transport properties of PEDOT-based materials: A critical review, Prog. Mater. Sci., 108, 100616.

[30] le Saché, E., and Reina, T.R., 2022, Analysis of dry reforming as direct route for gas phase CO2 conversion. The past, the present and future of catalytic DRM technologies, Prog. Energy Combust. Sci., 89, 100970.



DOI: https://doi.org/10.22146/ijc.79864

Article Metrics

Abstract views : 1147 | views : 930


Copyright (c) 2023 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.