Pharmacological Properties of Genista sagittalis L. (Fabaceae) Grown in Turkey

https://doi.org/10.22146/ijc.79477

Pelin Şenel(1), Bleda Can Sadıkoğulları(2), Elif Çepni Yüzbaşıoğlu(3), Gülnur Mertoğlu Elmas(4), Dilek Oral(5), Ayşegül Gölcü(6), Ayşe Daut Özdemir(7*)

(1) Department of Chemistry, Faculty of Sciences and Letters, Istanbul Technical University, 34469 Istanbul, Turkey
(2) Department of Chemistry, Faculty of Sciences and Letters, Istanbul Technical University, 34469 Istanbul, Turkey
(3) Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Vezneciler, 34134 Istanbul, Turkey
(4) Department of Forest Industrial Engineering, Forest Faculty, Istanbul University-Cerrahpasa, 34473 Istanbul, Turkey
(5) Department of Forest Botany, Forest Faculty, Istanbul University-Cerrahpasa, 34473 Istanbul, Turkey
(6) Department of Chemistry, Faculty of Sciences and Letters, Istanbul Technical University, 34469 Istanbul, Turkey
(7) Department of Chemistry, Faculty of Sciences and Letters, Istanbul Technical University, 34469 Istanbul, Turkey
(*) Corresponding Author

Abstract


The genus Genista L. (Family: Fabaceae) is a plant having several traditional uses for treating common ailments such as diabetes, ulcer, and respiratory diseases. In this current study, the composition of essential oil and the biological activities of Genista sagittalis L. (Fabaceae) from Kocaeli: Yuvacık Dam Basin have been studied. A total of fourteen components were identified in the essential oil. The identified compounds belonged to straight-chain alkane, aromatic ether, and terpenoid derivatives. The antibacterial activity analyses demonstrated that G. sagittalis flower extract only had low activity against P. mirabilis and P. aeruginosa with MICs 1 to 2 mg/mL, as the peduncle extract showed strong anti-QS activity at 1.3 mg/mL. To the best of our knowledge, the current work is the first to report the antimicrobial and anti-quorum sensing activity of G. sagittalis growing in Turkey. Double-stranded DNA binding affinity investigations of the flower and peduncle ethanol extracts indicate that there are interactions with double-stranded DNA and related binding constants (Kb) were found as 1.97×103±0.37 and 3.68×102±0.44 for the flower and peduncle extract, respectively.

Keywords


antibacterial; anti-quorum sensing; DNA binding; Fabaceae; Genista sagittalis; plant extracts

Full Text:

Full Text PDF


References

[1] Grafakou, M.E., Barda, C., Tomou, E.M., and Skaltsa, H., 2021, The genus Genista L.: A rich source of bioactive flavonoids, Phytochemistry, 181, 112574.

[2] Schmidt-Przewozna, K., and Zajaczek, K., 2022, Influence of flavonoid dyes on the color and pro - health benefits of linen fabrics, J. Nat. Fibers, 19 (15), 11165–11180.

[3] Simões, M.A.M., Pinto, D.C.G.A., Neves, B.M.R., and Silva, A.M.S., 2020, Flavonoid profile of the Genista tridentata L., a species used traditionally to treat inflammatory processes, Molecules, 25 (4), 812.

[4] Sharifi-Rad, J., Quispe, C., Imran, M., Rauf, A., Nadeem, M., Gondal, T.A., Ahmad, B., Atif, M., Mubarak, M.S., Sytar, O., Zhilina, O.M., Garsiya, E.R., Smeriglio, A., Trombetta, D., Pons, D.G., Martorell, M., Cardoso, S.M., Razis, A.F.A., Sunusi, U., Kamal, R.M., Rotariu, L.S., Butnariu, M., Docea, A.O., and Calina, D., 2021, Genistein: An integrative overview of its mode of action, pharmacological properties, and health benefits, Oxid. Med. Cell. Longevity, 2021, 3268136.

[5] Hanganu, D., Olah, N.K., Benedec, D., Mocan, A., Crisan G., Vlase, L., Popica, I., and Oniga I., 2016, Comparative polyphenolic content and antioxidant activities of Genista tinctoria L. and Genistella sagittalis (L.) Gams (Fabaceae), Pak. J. Pharm. Sci., 29 (Suppl. 1), 301–307.

[6] Tutin, T.G., 1968, “Chamaespartium Adans” in Flora Europaea Volume 2, Rosaceae to Umbelliferae, Eds. Tutin, T.G., Heywood, V.H., Burges, N.A., Moore, D.M., Valentine, D.H., Walters, S.M., and Webb, D.A., Cambridge University Press, Cambridge, UK, 205.

[7] Talavera, S., 1999, “Chamaespartium Adans” in Flora Iberica, Leguminosae-Cytiseae, Vol. 7, part 2, Real Jardin. Botánico, Madrid, Spain, 88, 128–133.

[8] Efe, A., Özhatay, E., Aksoy, N., and Oral, D.D., 2009, Chamaespartium Adans. (Leguminosae): A new record for the flora of Turkey, Turk. J. Bot., 33 (6), 453–456.

[9] POWO (Plants of the World Online), Genista sagittalis L., Royal Botanic Gardens, KEW, https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:496318-1, accessed on March 1st, 2022.

[10] Danihelka, J., Chrtek, J., and Kaplan, Z., 2012, Checklist of vascular plants of the Czech Republic, Preslia, 84, 647–811.

[11] Pyšek, P., Danihelka, J., Sádlo, J., Chrtek, J., Chytrý, M., Jarošík, V., Kaplan, Z., Krahulec, F., Moravcová, L., Pergl, J., Štajerová, K., and Tichý, L., 2012, Catalogue of alien plants of the Czech Republic (2nd edition): Checklist update, taxonomic diversity and invasion patterns, Preslia, 84, 155–255.

[12] Kalita, M., and Małek, W., 2017, Molecular phylogeny of Bradyrhizobium bacteria isolated from root nodules of tribe Genisteae plants growing in southeast Poland, Syst. Appl. Microbiol., 40 (8), 482–491.

[13] Gudžinskas, Z., and Taura, L., 2020, New alien plant species recorded in South Lithuania, Botanica, 26 (2), 170–183.

[14] IUCN, 2001, IUCN Red List Categories and Criteria, Version 3.1, IUCN Species Survival Commission, Gland, Switzerland and Cambridge, UK.

[15] Hanganu, D., Vlase, L., and Olah, N.K., 2010, Phytochemical analysis of isoflavons from some Fabaceae species extracts, Not. Bot. Horti Agrobot. Cluj-Napoca, 38 (1), 57–60.

[16] Kiss, B., Popa, D.S., Hanganu, D., Pop, A., and Loghin, F., 2010, Ultra-performance liquid chromatography method for the quantification of some phytoestrogens in plant material, Rev. Roum. Chim., 55 (8), 459–465.

[17] Tero-Vescan, A., Vari, C.E., and Vlase, L., 2014, Alkaloid content of some potential isoflavonoids sources (native Genista species). Long-term safety implications, Farmacia, 62 (6), 1109–1117.

[18] Łuczkiewicz, M., and Głód, D., 2003, Callus cultures of Genista plants—in vitro material producing high amounts of isoflavones of phytoestrogenic activity, Plant Sci., 165 (5), 1101–1108.

[19] Käss, E., and Wink, M., 1995, Molecular phylogeny of the Papilionoideae (family Leguminosae): RbcL gene sequences versus chemical taxonomy, Bot. Acta, 108 (2), 149–162.

[20] Teixeira, G., and Pereira, A.L., 2004, Winged stems in Pterospartum tridentatum: Morphoanatomical study, Acta Bot. Gallica, 151 (1), 103–109.

[21] Desmarchelier, C., Mongelli, E., Coussio, J., and Ciccia, G., 1996, Studies on the cytotoxicity, antimicrobial and DNA-binding activities of plants used by the Ese'ejas, J. Ethnopharmacol., 50 (2), 91–96.

[22] Hasplova, K., Hudecova, A., Miadokova, E., Magdolenova, Z., Galova, E., Vaculcikova, L., Gregan, F., and Dusinska, M., 2011, Biological activity of plant extract isolated from Papaver rhoeas on human lymfoblastoid cell line, Neoplasma, 58 (5), 386–391.

[23] Alizadeh, N., Şenel, P., Erdoğan, T., and Gölcü A., 2022, Elucidation of binding interactions and mechanism of rivastigmine tartrate with dsDNA via multi-spectroscopic, electrochemical, and molecular docking studies, J. Mol. Struct., 1268, 133736.

[24] Şenel, P., Cetinkaya, A., Kaya, S.I., Erdoğan, T., Topal, B.D., Gölcü, A., and Ozkan, S.A., 2022, Spectroscopic, electrochemical, and some theoretical studies on the interactional of neuraminidase inhibitor zanamivir with double helix deoxyribonucleic acid, J. Mol. Struct., 1262, 133029.

[25] Waihenya, S., Şenel, P., Osonga, F.J., Erdoğan, T., Altay, F., Gölcü, A., and Sadik, O.A., 2021, Mechanism of interactions of dsDNA binding with Apigenin and its sulfamate derivatives using multispectroscopic, voltammetric, and molecular docking studies, ACS Omega, 6 (8), 5124–5137.

[26] Yılmaz, Z.T., Odabaşoğlu, H.Y., Şenel, P., Adımcılar, V., Erdoğan, T., Özdemir, A.D., Gölcü, A., and Odabaşoğlu M., 2020, A novel 3-((5-methylpyridin-2-yl) amino) isobenzofuran-1(3H)-one: Molecular structure describe, X-ray diffractions and DFT calculations, antioxidant activity, DNA binding and molecular docking studies, J. Mol. Struct., 1205, 127585.

[27] Cheraghi, S., Şenel, P., Topal, B.B., Agar, S., Majidian, M., Yurtsever, M., Atici, E.B., Gölcü, A., and Ozkan, S.A., 2023, Elucidation of DNA-eltrombopag binding: Electrochemical, spectroscopic and molecular docking techniques, Biosensors, 13 (3), 300.

[28] McLean, R.J.C., Pierson, L.S., and Fuqua, C., 2004, A simple screening protocol for the identification of quorum signal antagonists, J. Microbiol. Methods, 58 (3), 351–360.

[29] de Farias, S.T., Furtado, A.N.M., dos Santos Junior, A.P., and José, M.V., 2023, Natural history of DNA-dependent DNA polymerases: Multiple pathways to the origins of DNA, Viruses, 15 (3), 749.

[30] Yılmaz, Z.T., Odabasoğlu, H.Y., Şenel, P., Yüzbaşıoğlu, E.Ç., Erdoğan, T., Özdemir, A.D., Gölcü, A., Odabaşoğlu, M., and Büyükgüngör, O., 2023, Identification of a 3-(5-methyl-2-thiazolylamino)phthalide as a new minor groove agent, J. Biomol. Struct. Dyn., 41 (9), 4048–4064.

[31] Blosser, R.S., and Gray, K.M., 2000, Extraction of violacein from Chromobacterium violaceum provides a new quantitative bioassay for N-acyl homoserine lactone autoinducers, J. Microbiol. Methods, 40 (1), 47–55.

[32] Small, H., 2023, Bayesian history of science: The case of Watson and Crick and the structure of DNA, Quant. Sci. Stud., 4 (1), 209–228.

[33] Noer, J.B., Hørsdal, O.K., Xiang, X., Luo, Y., and Regenberg, B., 2022, Extrachromosomal circular DNA in cancer: history, current knowledge, and methods, Trends Genet., 38 (7), 766–781.

[34] Pezzuto, J.M., Che, C.T., McPherson, D.D., Zhu, J.P., Topcu, G., Erdelmeier, C.A.J., and Cordell, G.A., 1991, DNA as an affinity probe useful in the detection and isolation of biologically active natural products, J. Nat. Prod., 54 (6), 1522–1530.

[35] Correa, Y.M, Niño, J., and Mosquera, O.M., 2007, DNA interaction of plant extracts from Colombian flora, Pharm. Biol., 45 (2), 111–115.

[36] Doğan, H.H., and Arslan, E., 2015, Biological activities and DNA interactions of Amanita ovoidea, Pharm. Biol., 53 (9), 1386–1390.

[37] Zhao, L., Zhao, X., Ma, Y., Zhang, Y., and Wang D., 2020, DNA binding characteristics and protective effects of yellow pigment from freshly cut yam (Dioscorea opposita), Molecules, 25 (1), 175.

[38] Benesi, H.A., Hildebrand, J.H., 1949, A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons, J. Am. Chem. Soc., 71 (8), 2703–2707.

[39] Beyazit, N., Kaya, K., Şenel, P., Özdemir, A.D., and Gölcü, A., 2019, Crystal structure and DNA binding properties of khellin oxime, J. Mol. Struct., 1197, 450–457.

[40] Şenel, P., Agar, S., İş, Y.S., Altay, F., Gölcü, A., and Yurtsever, M., 2022, Deciphering the mechanism and binding interactions of Pemetrexed with dsDNA with DNA-targeted chemotherapeutics via spectroscopic, analytical, and simulation studies, J. Pharm. Biomed. Anal., 209, 114490.

[41] Erdemoğlu, N., Ozkan, S., Duran, A., and Tosun, F., 2009, GC-MS analysis and antimicrobial activity of alkaloid extract from Genista vuralii, Pharm. Biol., 47 (1), 81–85.

[42] Boutaghane, N., Magid, A.A., Abedini, A., Cafolla, A., Djeghim, H., Gangloff, S.C., Voutquenne-Nazabadioko, L., and Kabouche, Z., 2019, Chemical constituents of Genista numidica Spach aerial parts and their antimicrobial, antioxidant and antityrosinase activities, Nat. Prod. Res., 33 (12), 1734–1740.



DOI: https://doi.org/10.22146/ijc.79477

Article Metrics

Abstract views : 1514 | views : 866


Copyright (c) 2023 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.