Visible-Light-Induced Photodegradation of Methylene Blue Using Mn,N-codoped ZrTiO4 as Photocatalyst

https://doi.org/10.22146/ijc.79261

Akhmad Syoufian(1*), Rian Kurniawan(2)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(2) Institute of Chemical Technology, Universität Leipzig, Linnéstr. 3, 04103 Leipzig, Germany
(*) Corresponding Author

Abstract


Composites of manganese and nitrogen-codoped zirconium titanate (Mn,N-codoped ZrTiO4) had been synthesized by the sol-gel method as a visible-light responsive photocatalyst for the photodegradation of methylene blue (MB). Synthesis was conducted at 25 °C using titanium(IV) isopropoxide, zirconium oxide, urea, and manganese(II) chloride. Mn,N-codoped ZrTiO4 containing fixed 10% nitrogen dopant (wN/wTi) with various Mn dopant contents (2, 4, 6, 8, and 10% wMn/wTi) and calcination temperatures (500, 700, and 900 °C) had been investigated. All of the Mn,N-codoped ZrTiO4 exhibit a band gap within the visible range (2.51 to 2.74 eV). Photodegradation of MB was performed under visible light illumination for 120 min. The highest activity was achieved up to 7.7 µg L−1 min−1, which was obtained from Mn,N-codoped ZrTiO4 calcined at 500 °C containing 6% Mn and 10% N dopants.

Keywords


Mn,N-codoped ZrTiO4; band gap; methylene blue; photodegradation; visible-light

Full Text:

Full Text PDF


References

[1] Siddeeg, S.M., Tahoon, M.A., Mnif, W., and Ben Rebah, F., 2019, Iron oxide/chitosan magnetic nanocomposite immobilized manganese peroxidase for decolorization of textile wastewater, Processes, 8 (1), 5.

[2] Zhu, C., Feng, Q., Ma, H., Wu, M., Wang, D., and Wang, Z., 2018, Effect of methylene blue on the properties and microbial community of anaerobic granular sludge, BioResources, 13 (3), 6033–6046.

[3] Khan, I., Saeed, K., Zekker, I., Zhang, B., Hendi, A.H., Ahmad, A., Ahmad, S., Zada, N., Ahmad, H., Shah, L.A., Shah, T., and Khan, I., 2022, Review on methylene blue: Its properties, uses, toxicity and photodegradation, Water, 14 (2), 242.

[4] Chung, K.T., Fulk, G.E., and Andrews, A.W., 1981, Mutagenicity testing of some commonly used dyes, Appl. Environ. Microbiol., 42 (4), 641–648.

[5] Nasrullah, A., Khan, H., Khan, A.S., Man, Z., Muhammad, N., Khan, M.I., and Abd El-Salam, N.M., 2015, Potential biosorbent derived from Calligonum polygonoides for removal of methylene blue dye from aqueous solution, Sci. World J., 2015, 562693.

[6] Yin, X., Liu, L., and Ai, F., 2021, Enhanced photocatalytic degradation of methylene blue by WO3 nanoparticles under NIR light irradiation, Front. Chem., 9, 683765.

[7] Han, M., Zhu, S., Lu, S., Song, Y., Feng, T., Tao, S., Liu, J., and Yang, B., 2018, Recent progress on the photocatalysis of carbon dots: Classification, mechanism and applications, Nano Today, 19, 201–218.

[8] Huang, Z., Gao, Z., Gao, S., Wang, Q., Wang, Z., Huang, B., and Dai, Y., 2017, Facile synthesis of S-doped reduced TiO2-x with enhanced visible-light photocatalytic performance, Chin. J. Catal., 38 (5), 821–830.

[9] Koe, W.S., Lee, J.W., Chong, W.C., Pang, Y.L., and Sim, L.C., 2019, An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane, Environ. Sci. Pollut. Res., 27 (3), 2522–2565.

[10] Zhang, J., Xiao, X., and Nan, J., 2010, Hydrothermal-hydrolysis synthesis and photocatalytic properties of nano-TiO2 with an adjustable crystalline structure, J. Hazard. Mater., 176 (1–3), 617–622.

[11] Reda, S.M., Khairy, M., and Mousa, M.A., 2020, Photocatalytic activity of nitrogen and copper doped TiO2 nanoparticles prepared by microwave-assisted sol-gel process, Arabian J. Chem., 13 (1), 86–95.

[12] Sudrajat, H., Babel, S., Ta, A.T., and Nguyen, T.K., 2020, Mn-doped TiO2 photocatalysts: Role, chemical identity, and local structure of dopant, J. Phys. Chem. Solids, 144, 109517.

[13] Valero-Romero, M.J., Santaclara, J.G., Oar-Arteta, L., van Koppen, L., Osadchii, D.Y., Gascon, J., and Kapteijn, F., 2019, Photocatalytic properties of TiO2 and Fe-doped TiO2 prepared by metal organic framework-mediated synthesis, Chem. Eng. J., 360, 75–88.

[14] Ganesh, I., Gupta, A.K., Kumar, P.P., Sekhar, P.S.C., Radha, K., Padmanabham, G., and Sundararajan, G., 2012, Preparation and characterization of Ni-doped TiO2 materials for photocurrent and photocatalytic applications, Sci. World J., 2012, 127326.

[15] Umar, K., Aris, A., Ahmad, H., Parveen, T., Jaafar, J., Majid, Z.A., Reddy, A.V.B., and Talib, J., 2016, Synthesis of visible light active doped TiO2 for the degradation of organic pollutants—methylene blue and glyphosate, J. Anal. Sci. Technol., 7 (1), 29.

[16] Negi, C., Kandwal, P., Rawat, J., Sharma, M., Sharma, H., Dalapati, G., and Dwivedi, C., 2021, Carbon-doped titanium dioxide nanoparticles for visible light driven photocatalytic activity, Appl. Surf. Sci., 554, 149553.

[17] Khan, T.T., Rafiqul Bari, G.A.K.M., Kang, H.J., Lee, T.G., Park, J.W., Hwang, H.J., Hossain, S.M., Mun, J.S., Suzuki, N., Fujishima, A., Kim, J.H., Shon, H.K., and Jun, Y.S., 2021, Synthesis of N-doped TiO2 for efficient photocatalytic degradation of atmospheric NOx, Catalysts, 11 (1), 109.

[18] Yu, W., Liu, X., Pan, L., Li, J., Liu, J., Zhang, J., Li, P., Chen, C., and Sun, Z., 2014, Enhanced visible light photocatalytic degradation of methylene blue by F-doped TiO2, Appl. Surf. Sci., 319, 107–112.

[19] Cravanzola, S., Cesano, F., Gaziano, F., and Scarano, D., 2017, Sulfur-doped TiO2: Structure and surface properties, Catalysts, 7 (7), 214.

[20] Cheng, X., Yu, X., Xing, Z., and Yang, L., 2016, Synthesis and characterization of N-doped TiO2 and its enhanced visible-light photocatalytic activity, Arabian J. Chem., 9, S1706–S1711.

[21] Piątkowska, A., Janus, M., Szymański, K., and Mozia, S., 2021, C-,N- and S-doped TiO2 photocatalysts: A review, Catalysts, 11 (1), 144.

[22] Długosz, O., Szostak, K., and Banach, M., 2020, Photocatalytic properties of zirconium oxide–zinc oxide nanoparticles synthesised using microwave irradiation, Appl. Nanosci., 10 (3), 941–954.

[23] Zare, M.H., and Mehrabani-Zeinabad, A., 2022, Photocatalytic activity of ZrO2/TiO2/Fe3O4 ternary nanocomposite for the degradation of naproxen: characterization and optimization using response surface methodology, Sci. Rep., 12 (1), 10388.

[24] Chandra, U., 2017, Recent Applications in Sol-Gel Synthesis, IntechOpen, Rijeka.

[25] Syoufian, A., and Nakashima, K., 2008, Degradation of methylene blue in aqueous dispersion of hollow titania photocatalyst: Study of reaction enhancement by various electron scavengers, J. Colloid Interface Sci., 317 (2), 507–512.

[26] Hidayat, R., Wahyuningsih, S., Fadillah, G., and Ramelan, A.H., 2022, Highly visible light photodegradation of RhB as synthetic organic dye pollutant over TiO2-modified reduced graphene oxide, J. Inorg. Organomet. Polym. Mater., 32 (1), 85–93.

[27] Muzammil, P., Basha, S.M., and Muhammed, G.S., 2020, Structural and magnetic properties of Fe-doped GaN by sol-gel technique, J. Supercond. Novel Magn., 33 (9), 2767–2771.

[28] Feng, Z.H., Liu, B., Yuan, F.P., Yin, J.Y., Liang, D., Li, X.B., Feng, Z., Yang, K.W., and Cai, S.J., 2007, Influence of Fe-doping on GaN grown on sapphire substrates by MOCVD, J. Cryst. Growth, 309 (1), 8–11.

[29] Wolfgong, W.J., 2016, “Chemical Analysis Techniques for Failure Analysis: Part 1, Common Instrumental Methods” in Handbook of Materials Failure Analysis with Case Studies from the Aerospace and Automotive Industries, Eds. Makhlouf A.S.H., and Aliofkhazraei, M., Butterworth-Heinemann, Boston, 279–307.

[30] Titus, D., James Jebaseelan Samuel, E., and Roopan, S.M., 2019, “Nanoparticle Characterization Techniques” in Green Synthesis, Characterization and Applications of Nanoparticles, Eds., Shukla, Ashutosh K., and Iravani, S., Elsevier, Amsterdam, Netherlands, 303–319.

[31] Holzwarth, U., and Gibson, N., 2011, The Scherrer equation versus the 'Debye-Scherrer equation', Nat. Nanotechnol., 6 (9), 534–534.

[32] Chauhan, R., Kumar, A., and Chaudhary, R.P., 2012, Structural and optical characterization of Zn doped TiO2 nanoparticles prepared by sol-gel method, J. Sol-Gel Sci. Technol., 61 (3), 585–591.

[33] Natarajan, T.S., Mozhiarasi, V., and Tayade, R.J., 2021, Nitrogen doped titanium dioxide (N-TiO2): synopsis of synthesis methodologies, doping mechanisms, property evaluation and visible light photocatalytic applications, Photochem, 1 (3), 371–410.

[34] Sakthisharmila, P., Sivakumar, N., and Mathupriya, J., 2021, Synthesis, characterization of Mn, Fe doped ZrO2 composites and its applications on photocatalytic and solar catalytic studies, Mater. Today: Proc., 47, 2159–2167.

[35] Muslim, M.I., Kurniawan, R., Pradipta, M.F., Trisunaryanti, W., and Syoufian, A., 2021, The effects of manganese dopant content and calcination temperature on properties of titania-zirconia composite, Indones. J. Chem., 21 (4), 882–890.

[36] Horti, N.C., Kamatagi, M.D., Nataraj, S.K., Wari, M.N., and Inamdar, S.R., 2020, Structural and optical properties of zirconium oxide (ZrO2) nanoparticles: effect of calcination temperature, Nano Express, 1 (1), 010022.

[37] Sze, S.M., and Ng, K.K., 2006, Physics of Semiconductor Devices, 3rd Ed., Wiley-Interscience, Hoboken, New Jersey, US.

[38] Žerjav, G., Žižek, K., Zavašnik, J., and Pintar, A., 2022, Brookite vs. rutile vs. anatase: What`s behind their various photocatalytic activities?, J. Environ. Chem. Eng., 10 (3), 107722.

[39] Zakria, H.S., Othman, M.H.D., Kamaludin, R., Sheikh Abdul Kadir, S.H., Kurniawan, T.A., and Jilani, A., 2021, Immobilization techniques of a photocatalyst into and onto a polymer membrane for photocatalytic activity, RSC Adv, 11 (12), 6985–7014.

[40] Chu, S., Wang, Y., Wang, C., Yang, J., and Zou, Z., 2013, Bandgap modulation of polyimide photocatalyst for optimum H2 production activity under visible light irradiation, Int. J. Hydrogen Energy, 38 (25), 10768–10772.



DOI: https://doi.org/10.22146/ijc.79261

Article Metrics

Abstract views : 2301 | views : 1436


Copyright (c) 2023 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.