Comparative Study of Soft Template on Gunningite Synthesis for Ibuprofen Adsorption Application

https://doi.org/10.22146/ijc.79098

Maria Ulfa(1*), Windi Apriliani(2)

(1) Study Program of Chemistry Education, Faculty of Teacher Training and Education, Sebelas Maret University, Jl. Ir. Sutami 36A, 57126 Surakarta, Central Java, Indonesia
(2) Study Program of Chemistry Education, Faculty of Teacher Training and Education, Sebelas Maret University, Jl. Ir. Sutami 36A, 57126 Surakarta, Central Java, Indonesia
(*) Corresponding Author

Abstract


This study aimed to investigate the effect of soft template variations on Zinc Sulfate Hydrate (Gunningite) synthesis and the maximum adsorption capacity of ibuprofen. This study employed the soft template method and hydrothermal at 100 °C, followed by calcination at 550 °C. Here, ZnSO4 heptahydrate was used as the precursor for different templates. XRD analysis exhibited that the crystal sizes of Gunningite-F127G, Gunningite-F127, Gunningite-P123G, Gunningite-P123, and Gunningite-G were 18.35; 25.33; 25.67; 27.30; and 24.24 nm with crystallinity degrees of 36.89; 42.62; 46.83; 41.27; and 40.62%, respectively. FTIR examination indicated that the five samples contained functional groups of OH stretching at 3170 cm–1, Zn-O-Zn at 1637 cm–1, Zn-S=O symmetric and asymmetric at 900 and 1056 cm–1, and Zn-O at 521 cm–1. Furthermore, SEM-EDX investigation revealed that the morphology of all Gunningite samples was inhomogeneous due to agglomeration. Besides that, the elemental compositions in the samples were dominated by Zn and O elements. The maximum adsorption capacity obtained from each sample was 221.1 mg/g (Gunningite-F127G); 226.06 mg/g (Gunningite-F127); 234.23 mg/g (Gunningite-P123G); 229.76 mg/g (Gunningite-P123); and 222.85 mg/g (Gunningite-G). Moreover, the Gunningite kinetic model of ibuprofen adsorption followed Ho and McKay's pseudo-second-order kinetic model.

Keywords


Gunningite; ibuprofen; P123; F127; gelatin

Full Text:

Full Text PDF


References

[1] Manzano, J.S., Singappuli-Arachchige, D., Parikh, B.L., and Slowing, I.I., 2018, Fine-tuning the release of molecular guests from mesoporous silicas by controlling the orientation and mobility of surface phenyl substituents, Chem. Eng. J., 340, 73–80.

[2] Das, S.K., Kahali, N., Bose, A., and Khanam, J., 2018, Physicochemical characterization and in vitro dissolution performance of ibuprofen-Captisol® (sulfobutylether sodium salt of β-CD) inclusion complexes, J. Mol. Liq., 261, 239–249.

[3] Wang, X., Liu, P., and Tian, Y., 2011, Preparation and drug release behavior of temperature-responsive mesoporous carbons, J. Solid State Chem., 184 (6), 1571–1575.

[4] Ulfa, M., Prasetyoko, D., Mahadi, A.H., and Bahruji, H., 2020, Size tunable mesoporous carbon microspheres using Pluronic F127 and gelatin as co-template for removal of ibuprofen, Sci. Total Environ., 711, 135066.

[5] Bouzidi, M., Sellaoui, L., Mohamed, M., Franco, D.S.P., Erto, A., and Badawi, M., 2023, A comprehensive study on paracetamol and ibuprofen adsorption onto biomass-derived activated carbon through experimental and theoretical assessments, J. Mol. Liq., 376, 121457.

[6] Ulfa, M., Ari, M., and Ali, P., 2022, Influence of calcination temperatures on gunningite-based gelatin template and its application as ibuprofen adsorption, Indones. J. Chem., 22 (6), 1684–1692.

[7] Prasetyoko, D., Sholeha, N.A., Subagyo, R., Ulfa, M., Bahruji, H., Holilah, H., Pradipta, M.F., and Jalil, A.A., 2023, Mesoporous ZnO nanoparticles using gelatin — Pluronic F127 as a double colloidal system for methylene blue photodegradation, Korean J. Chem. Eng., 40 (1), 112–123.

[8] Guedidi, H., Reinert, L., Soneda, Y., Bellakhal, N., and Duclaux, L., 2017, Adsorption of ibuprofen from aqueous solution on chemically surface-modified activated carbon cloths, Arabian J. Chem., 10 (2), S3584–S3594.

[9] Babikier, M., Wang, D., Wang, J., Li, Q., Sun, J., Yan, Y., Yu, Q., and Jiao, S., 2014, Fabrication and properties of sulfur (S)-doped ZnO nanorods, J. Mater. Sci.: Mater. Electron., 25 (1), 157–162.

[10] Ducher, M., Blanchard, M., and Balan, E., 2018, Equilibrium isotopic fractionation between aqueous Zn and minerals from first-principles calculations, Chem. Geol., 483, 342–350.

[11] Tilak, S., and Suresh Kumar, H.M., 2020, Optical, thermal, mechanical, dielectric and magnetic properties of zinc sulphate doped L-ascorbic acid NLO crystal, Mater. Today: Proc., 27, 503–508.

[12] Karakiliç, P., Toyoda, R., Kapteijn, F., Nijmeijer, A., and Winnubst, L., 2019, From amorphous to crystalline: Transformation of silica membranes into silicalite-1 (MFI) zeolite layers, Microporous Mesoporous Mater., 276, 52–61.

[13] Yan, Y., Wei, J., Zhang, F., Meng, Y., Tu, B., and Zhao, D., 2008, The pore structure evolution and stability of mesoporous carbon FDU-15 under CO2, O2 or water vapor atmospheres, Microporous Mesoporous Mater., 113 (1-3), 305–314.

[14] Liu, T., Lai, D., Feng, X., Zhu, H., and Chen, J., 2013, Synthesis and characterization of a novel mesoporous bioactive glass/hydroxyapatite nanocomposite, Mater. Lett., 92, 444–447.

[15] Ulfa, M., Masykur, A., Nofitasari, A.F., Sholeha, N.A., Suprapto, S., Bahruji, H., and Prasetyoko, D., 2022, Controlling the size and porosity of sodalite nanoparticles from Indonesian kaolin for Pb2+ removal, Materials, 15 (8), 2745.

[16] Nagamine, S., Kurumada, K., Tanigaki, M., and Endo, A., 2001, Effects of catalytic acid and templating surfactant concentrations on mesostructure of submillimeter-thick mesoporous silica by solvent evaporation synthesis, Microporous Mesoporous Mater., 49 (1-3), 57–64.

[17] He, Z., and Alexandridis, P., 2018, Micellization thermodynamics of Pluronic P123 (EO20PO70EO20) amphiphilic block copolymer in aqueous ethylammonium nitrate (EAN) solutions, Polymer, 10 (1), 32.

[18] Buzatu, A., Dill, H.G., Buzgar, N., Damian, G., Maftei, A.E., and Apopei, A.I., 2016, Efflorescent sulfates from Baia Sprie mining area (Romania) — Acid mine, Sci. Total Environ., 542, 629–641.

[19] Yang, J., Zhai, Y., Deng, Y., Gu, D., Li, Q., Wu, Q., Huang, Y., Tu, B., and Zhao, D., 2010, Direct triblock-copolymer-templating synthesis of ordered nitrogen-containing mesoporous polymers, J. Colloid Interface Sci., 342 (2), 579–585.

[20] Li, S., Jiang, M., Shi, X., Liu, Z., and Zhou, G., 2017, P123 assisted morphology-engineered and hierarchical TiO2 microspheres for enhanced photocatalytic activity, J. Porous Mater., 24 (6), 1425–1436.

[21] Shi, F., Liu, J.X., Huang, X., Yu, L., Liu, S.H., Feng, X., Wang, X.K., Shao, G.L., Hu, S.C., Yang, B., and Fan, C.Y., 2015, Hydrothermal synthesis of mesoporous WO3-TiO2 powders with enhanced photocatalytic activity, Adv. Powder Technol., 26 (5), 1435–1441.

[22] Wang, X., Wan, Y., Hu, W., Chou, I.M., Cao, J., Wang, X., Wang, M., and Li, Z., 2016, In situ observations of liquid–liquid phase separation in aqueous ZnSO4 solutions at temperatures up to 400 °C: Implications for Zn2+–SO42− association and evolution of submarine hydrothermal fluids, Geochim. Cosmochim. Acta, 181, 126–143.

[23] Ho, Y.S., and McKay, G., 1999, Pseudo-second order model for sorption processes, Process Biochem., 34 (5), 451–465.

[24] Ho, Y.S., 2004, Citation review of Lagergren kinetic rate equation on adsorption reactions, Scientometrics, 59 (1), 171–177.

[25] Ulfa, M., Sari, A.Y., and Prasetyoko, D., 2018, Synthesis of unique natural silica (UNS) material via dual co-templating method using starch of waste rice-gelatin composite and their performance in drug delivery system, AIP Conf. Proc., 2049, 020003.

[26] Lei, X., Huang, L., Liu, K., Ouyang, L., Shuai, Q., and Hu, S., 2021, Facile one-pot synthesis of hierarchical N-doped porous carbon for efficient ibuprofen removal, J. Colloid Interface Sci., 604, 823–831.



DOI: https://doi.org/10.22146/ijc.79098

Article Metrics

Abstract views : 894 | views : 623


Copyright (c) 2023 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.