Polyvinylidene Fluoride (PVDF)/Modified Clay Hybrid Membrane for Humic Acid and Methylene Blue Filtration

https://doi.org/10.22146/ijc.78979

Edi Pramono(1*), Gadis Prihatin Wahyu Sejati(2), Sayekti Wahyuningsih(3), Candra Purnawan(4)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Kentingan, Surakarta 57126, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Kentingan, Surakarta 57126, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Kentingan, Surakarta 57126, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Kentingan, Surakarta 57126, Indonesia
(*) Corresponding Author

Abstract


This research studied the impact of silanized clay modification on performance and antifouling Poly(vinylidene fluoride) (PVDF) membrane toward humic acid and methylene blue filtration. Clay modification was carried out by using 3-aminopropyltriethoxysilane (APS) to produce modified clay (Clay-APS). Hybrid membranes were prepared by phase inversion for humic acid and methylene blue filtration. Hybrid membranes were characterized by measuring surface hydrophilicity, water flux, rejection, and antifouling properties. Clay and Clay-APS modification increased hybrid membrane surface hydrophilicity, as indicated by increasing the β fraction and decreasing the water contact angle. The PVDF/Clay and PVDF/Clay-APS hybrid membranes showed high permeability and selectivity with the highest water flux values of 24.2 L m−2 h−1. The rejections for humic acid and methylene blue were 98.8 and 99.3%, respectively. The highest antifouling property was obtained from the PVDF/Clay-APS hybrid membrane, with a flux recovery ratio was 96.0%. The PVDF/Clay hybrid membrane performance and antifouling properties showed that the membranes have the potential for water treatment.

Keywords


clay modification; dye filtration; hybrid membrane; polyvinylidene fluoride

Full Text:

Full Text PDF


References

[1] Yalcinkaya, F., Boyraz, E., Maryska, J., and Kucerova, K., 2020, A review on membrane technology and chemical surface modification for the oily wastewater treatment, Materials, 13 (2), 493.

[2] Aryanti, P.T.P., Noviyani, A.M., Kurnia, M.F., Rahayu, D.A., and Nisa, A.Z., 2018, Modified polysulfone ultrafiltration membrane for humic acid removal during peat water treatment, IOP Conf. Ser.: Mater. Sci. Eng., 288, 012118.

[3] Lin, F., Zhang, S., Ma, G., Qiu, L., and Sun, H., 2018, Application of ceramic membrane in water and wastewater treatment, E3S Web Conf., 53, 04032

[4] Yaseen, D.A., and Scholz, M., 2019, Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review, Int. J. Environ. Sci. Technol., 16 (2), 1193–1226.

[5] Muneeb, M., Ismail, B., Fazal, T., Khan, R.A., Khan, A.M., Bilal, M., Muhammad, B., and Khan, A.R., 2018, Water treatment by photodegradation on orthorhombic antimony sulfide powder and effect of key operational parameters using methyl orange as a model pollutant, Arabian J. Chem., 11 (7), 1117–1125.

[6] Xu, L., Shan, B., Gao, C., and Xu, J., 2020, Multifunctional thin-film nanocomposite membranes comprising covalent organic nanosheets with high crystallinity for efficient reverse osmosis desalination, J. Membr. Sci., 593, 117398.

[7] Gopakumar, D.A., Arumukhan, V., Gelamo, R., Pasquini, D., de Morais, L.C., Rizal, S., Hermawan, D., Nzihou, A., and Khalil, H.P.S.A., 2019, Carbon dioxide plasma treated PVDF electrospun membrane for the removal of crystal violet dyes and iron oxide nanoparticles from water, Nano-Struct. Nano-Objects, 18, 100268.

[8] Brunetti, A., Tocci, E., Cersosimo, M., Kim, J.S., Lee, W.H., Seong, J.G., Lee, Y.M., Drioli, E., and Barbieri, G., 2019, Mutual influence of mixed-gas permeation in thermally rearranged poly(benzoxazole-co-imide) polymer membranes, J. Membr. Sci., 580, 202–213.

[9] Shen, Z., Chen, W., Xu, H., Yang, W., Kong, Q., Wang, A., Ding, M., and Shang, J., 2019, Fabrication of a novel antifouling polysulfone membrane with in situ embedment of MXene nanosheets, Int. J. Environ. Res. Public Health, 16 (23), 4659.

[10] Mat Nawi, N.I., Chean, H.M., Shamsuddin, N., Bilad, M.R., Narkkun, T., Faungnawakij, K., and Khan, A.L., 2020, Development of hydrophilic PVDF membrane using vapour induced phase separation method for produced water treatment, Membranes, 10 (6), 121.

[11] Goh, P.S., Lau, W.J., Othman, M.H.D., and Ismail, A.F., 2018, Membrane fouling in desalination and its mitigation strategies, Desalination, 425, 130–155.

[12] Arumugham, T., Kaleekkal, N.J., Rana, D., and Doraiswamy, M., 2016, Separation of oil/water emulsions using nano MgO anchored hybrid ultrafiltration membranes for environmental abatement, J. Appl. Polym. Sci., 133 (1), 42848.

[13] Kang, G., and Cao, Y., 2014, Application and modification of poly(vinylidene fluoride) (PVDF) membranes – A review, J. Membr. Sci., 463, 145–165.

[14] Liu, L., Huang, L., Shi, M., Li, W., and Xing, W., 2019, Amphiphilic PVDF-g-PDMAPMA ultrafiltration membrane with enhanced hydrophilicity and antifouling properties, J. Appl. Polym. Sci., 136 (42), 48049.

[15] Wang, W., Xu, X., Zhang, Z., Zhang, P., Shi, Y., and Ding, P., 2021, Study on the improvement of PVDF flat ultrafiltration membrane with MWCNTs-OH as the additive and the influence of different MWCNTs-OH scales, Colloid Interface Sci. Commun., 43, 100433.

[16] Deng, W., Fan, T., and Li, Y., 2021, In situ biomineralization-constructed superhydrophilic and underwater superoleophobic PVDF-TiO2 membranes for superior antifouling separation of oil-in-water emulsions, J. Membr. Sci., 622, 119030.

[17] Gonggo, S.T., Edyanti, F., and Suherman, S., 2013, Karakterisasi fisikokimia mineral lempung sebagai bahan dasar industri keramik di desa Lembah Bomban kecamatan Bolano Lambunu kabupaten Parigi Moutong, JAK, 2 (2), 105–113.

[18] Wae AbdulKadir, W.A.F., Ahmad, A.L., and Ooi, B.S., 2021, A water-repellent PVDF-HNT membrane for high and low concentrations of oxytetracycline treatment via DCMD: An experimental investigation, Chem. Eng. J., 422, 129644.

[19] Farahani, M.H.D.A. and Vatanpour, V., 2018, A comprehensive study on the performance and antifouling enhancement of the PVDF mixed matrix membranes by embedding different nanoparticulates: Clay, functionalized carbon nanotube, SiO2 and TiO2, Sep. Purif. Technol., 197, 372–381.

[20] Ravi, J., Othman, M.H.D., Matsuura, T., Ro’il Bilad, M., El-badawy, T.H., Aziz, F., Ismail, A.F., Rahman, M.A., and Jaafar, J., 2020, Polymeric membranes for desalination using membrane distillation: A review, Desalination, 490, 114530.

[21] Ondrušová, D., Božeková, S., Buňová, L., Pajtášová, M., Labaj, I., Dubec, A., and Vršková, J., 2018, Modification of alternative additives and their effect on the rubber properties, MATEC Web Conf., 157, 07007.

[22] Ismoyo, Y.A., Sejati, G.P.W., Pranoto, P., and Pramono, E., 2022, The potential of polyvinylidene fluoride (PVDF)-kaolin membrane for water treatment, J. Phys.: Conf. Ser., 2190, 012022.

[23] de Souza Lima, J., Costa, F.N., Bastistella, M.A., de Araújo, P.H.H., and de Oliveira, D., 2019, Functionalized kaolin as support for endoglucanase immobilization, Bioprocess Biosyst. Eng., 42 (7), 1165–1173.

[24] Mbaye, A., Diop, C.A.K., Miehe-Brendle, J., Senocq, F., and Maury, F., 2014, Characterization of natural and chemically modified kaolinite from Mako (Senegal) to remove lead from aqueous solutions, Clay Miner., 49 (4), 527–539.

[25] Tao, Q., Su, L., Frost, R.L., Zhang, D., Chen, M., Shen, W., and He, H., 2014, Silylation of mechanically ground kaolinite, Clay Miner., 49 (4), 559–568.

[26] Fatimah, I., 2018, Preparation, characterization and physicochemical study of 3-amino propyl trimethoxy silane-modified kaolinite for Pb(II) adsorption, J. King Saud Univ., Sci., 30 (2), 250–257.

[27] Pramono, E., Umam, K., Sagita, F., Saputra, O.A., Alfiansyah, R., Setyawati Dewi, R.S., Kadja, G.T.M., Ledyastuti, M., Wahyuningrum, D., and Radiman, C.L., 2023, The enhancement of dye filtration performance and antifouling properties in amino-functionalized bentonite/polyvinylidene fluoride mixed matrix membranes, Heliyon, 9 (1), e12823.

[28] Yang, L., Qiu, J., Zhu, K., Ji, H., Zhao, Q., Shen, M., and Zeng, S., 2018, Effect of rolling temperature on the microstructure and electric properties of β-polyvinylidene fluoride films, J. Mater. Sci.: Mater. Electron., 29 (18), 15957–15965.

[29] Yuliwati, E., Ismail, A.F., Matsuura, T., Kassim, M.A., and Abdullah, M.S., 2011, Characterization of surface-modified porous PVDF hollow fibers for refinery wastewater treatment using microscopic observation, Desalination, 283, 206–213.

[30] Stevenson, F.J., 1994, Humus Chemistry: Genesis, Composition, Reactions, 2nd Ed., John Wiley & Sons, New York.

[31] Teoh, G.H., Ooi, B.S., Jawad, Z.A., and Low, S.C., 2021, Impacts of PVDF polymorphism and surface printing micro-roughness on superhydrophobic membrane to desalinate high saline water, J. Environ. Chem. Eng., 9 (4), 105418.

[32] Park, M.J., Wang, C., Seo, D.H., Gonzales, R.R., Matsuyama, H., and Shon, H.K., 2021, Inkjet printed single walled carbon nanotube as an interlayer for high performance thin film composite nanofiltration membrane, J. Membr. Sci., 620, 118901.

[33] Zahid, M., Rashid, A., Akram, S., Rehan, Z.A., and Razzaq, W., 2018, A comprehensive review on polymeric nano-composite membranes for water treatment, J. Membr. Sci. Technol., 8 (1), 1000179.

[34] Pramono, E., Alfiansyah, R., Ahdiat, M., Wahyuningrum, D., and Radiman, C.L., 2019, Hydrophilic poly(vinylidene fluoride)/bentonite hybrid membranes for microfiltration of dyes, Mater. Res. Express, 6, 105376.

[35] Marino, T., Russo, F., and Figoli, A., 2018, The formation of polyvinylidene fluoride membranes with tailored properties via vapour/non-solvent induced phase separation, Membranes, 8 (3), 71.

[36] Franco-Urquiza, E., Gamez Perez, J., Sánchez-Soto, M., Santana, O.O., and Maspoch, M.L., 2010, The effect of organo-modifier on the structure and properties of poly[ethylene–(vinyl alcohol)]/organo-modified montmorillonite composites, Polym. Int., 59 (6), 778–786.

[37] Golz, E.K., and Vander Griend, D.A., 2013, Modeling methylene blue aggregation in acidic solution to the limits of factor analysis, Anal. Chem., 85 (2), 1240–1246.

[38] Gayathri, S., and Govindaraju, K.M., 2019, Fabrication and characterization of Al/ZnO blended polyvinylidene fluoride (PVDF) membrane via electrospun method, Res. J. Pharm. Technol., 12 (2), 787–790.

[39] Woo, S.H., Kim, K.M., Park, J., and Min, B.R., 2015, Preparation and characterization of poly(vinylidene fluoride) (PVDF) membrane, Chem. Lett., 44 (1), 85–87.

[40] Fu, X., Zhu, L., Liang, S., Jin, Y., and Yang, S., 2020, Sulfonated poly(α,β,β-trifluorostyrene)-doped PVDF ultrafiltration membrane with enhanced hydrophilicity and antifouling property, J. Membr. Sci., 603, 118046.

[41] Zhang, Y., Ye, L., Zhao, W., Chen, L., Zhang, M., Yang, G., and Zhang, H., 2020, Antifouling mechanism of the additive-free β-PVDF membrane in water purification process: Relating the surface electron donor monopolarity to membrane-foulant interactions, J. Membr. Sci., 601, 117873.

[42] Mouri, E., Kajiwara, K., Kawasaki, S., Shimizu, Y., Bando, H., Sakai, H., and Nakato, T., 2022, Impacts of negatively charged colloidal clay particles on photoisomerization of both anionic and cationic azobenzene molecules, RSC Adv., 12 (17), 10855–10861.

[43] Zhang, R., Liu, Y., Li, Y., Han, Q., Zhang, T., Zeng, K., and Zhao, C., 2020, Polyvinylidene fluoride membrane modified by tea polyphenol for dye removal, J. Mater. Sci., 55 (1), 389–403.

[44] Liu, Y., Shen, L., Lin, H., Yu, W., Xu, Y., Li, R., Sun, T., and He, Y., 2020, A novel strategy based on magnetic field assisted preparation of magnetic and photocatalytic membranes with improved performance, J. Membr. Sci., 612, 118378.

[45] Liu, X., Chen, Y., Deng, Z., and Yang, Y., 2020, High-performance nanofiltration membrane for dyes removal: Blending Fe3O4-HNTs nanocomposites into poly(vinylidene fluoride) matrix, J. Dispersion Sci. Technol., 42 (1), 93–102.

[46] Zhao, Y., Yu, W., Li, R., Xu, Y., Liu, Y., Sun, T., Shen, L., and Lin, H., 2019, Electric field endowing the conductive polyvinylidene fluoride (PVDF)-graphene oxide (GO)‑nickel (Ni) membrane with high-efficient performance for dye wastewater treatment, Appl. Surf. Sci., 483, 1006–1016.



DOI: https://doi.org/10.22146/ijc.78979

Article Metrics

Abstract views : 2050 | views : 1414


Copyright (c) 2023 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.