Novel Metal Coordination Complexes Based on 4-Aminophenol: Spectroscopic Analysis and Antibacterial Test
Husna Syaima(1), Sentot Budi Rahardjo(2*), Anisa Nurul Hanifa(3), Ariffah Ana Fathonah(4), Ratna Setyaningsih(5)
(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Mulawarman, Samarinda 75123, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Kentingan, Surakarta 57126, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Kentingan, Surakarta 57126, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Kentingan, Surakarta 57126, Indonesia
(5) Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Kentingan, Surakarta 57126, Indonesia
(*) Corresponding Author
Abstract
The aims of this research are to synthesize and determine the formula, characteristics, and complex structure of Cu(II) and Co(II) with 4-aminophenol and to investigate their antibacterial activity. The complexes were synthesized by refluxing a solution of CuSO4·5H2O and CoSO4·7H2O, respectively, with 4-aminophenol in methanol for 1 h. The products were characterized using UV-Vis spectroscopy, atomic absorption spectroscopy, thermal analysis, conductivity, FTIR, and magnetic moment. The formation of the complex was indicated by shifting of maximum wavelength of the metal solution toward shorter, i.e., 817 to 421 nm for Cu(II) and 566 to 450 nm for Co(II). From the characterization, the proposed formulas of the complexes are [Cu(4-aminophenol)4]SO4 and [Co(4-aminophenol)4(H2O)2]SO4·5H2O forming square planar and octahedral geometry, respectively. Both complexes are paramagnetic with negligible antibacterial activity against Staphylococcus aureus, Staphylococcus epidermis, Escherichia coli, and Pseudomonas aeruginosa.
Keywords
Full Text:
Full Text PDFReferences
[1] Singh, M., Sahu, A., Mahata, S., Singh, P.K., Rai, V.K., and Rai, A., 2019, Efficient electrochemical determination of p-aminophenol using a novel tricomponent graphene-based nanocomposite, New J. Chem., 43 (37), 14972–14978.
[2] Barzinjy, A.A.A., 2017, Comparative crystal field studies of some ligand of Cr3+ complexes, Eurasian J. Sci. Eng., 3 (1), 109–116.
[3] Grundhoefer, J.P., Hardy, E.E., West, M.M., Curtiss, A.B., and Gorden, A.E., 2019, Mononuclear Cu(II) and Ni(II) complexes of bis (naphthalen-2-ol) Schiff base ligands, Inorg. Chim. Acta, 484, 125–132.
[4] Karabansannavar, S., Allolli, P., Shaikh, I.N., and Kalshetty, B.M., 2017, Synthesis, characterization and antimicrobial activity of some metal complexes derived from thiazole Schiff bases with in-vitro cytotoxicity and DNA cleavage studies, Indian J. Pharm. Educ. Res., 51 (3), 490–502.
[5] Zangrando, E., Islam, M.T., Islam, M.A.A.A., Sheikh, M.C., Tarafder, M.T.H., Miyatake, R., Zahan, R., and Hossain, M.A., 2015, Synthesis, characterization and bioactivity of nickel(II) and copper(II) complexes of a bidentate NS Schiff base of s-benzyl dithiocarbazate, Inorg. Chim. Acta, 427, 278–284.
[6] Ding, P., Wang, Y., Kou, H., Li, J., and Shi, B., 2019, Synthesis of heterobinuclear Cu(Ⅱ)-Ni(Ⅱ) complex: Structure, CT-DNA interaction, hydrolytic function and antibacterial studies, J. Mol. Struct., 1196, 836–843.
[7] Gul, Z., Din, N.U., Khan, E., Ullah, F., and Nawaz Tahir, M., 2020, Synthesis, molecular structure, anti-microbial, anti-oxidant, and enzyme inhibition activities of 2-amino-6-methylbenzothiazole and its Cu(II) and Ag(I) complexes, J. Mol. Struct., 1199, 126956.
[8] Tania, L., Wijaya, K., and Trisunaryanti, W., 2014, Sintesis Cu(II)/silika dengan metode sol-gel sebagai antibakteri terhadap Escherichia coli dan Staphylococcus aureus, BIMIPA, 24 (2), 122–135.
[9] Syaima, H., Rahardjo, S.B., and Suciningrum, E., 2017, Synthesis and elucidation structure of tetrakis-diphenylaminecopper(II) chloride hexahydrate, J. Phys.: Conf. Ser., 909, 012080.
[10] Mishra, N., Gound, S.S., Mondal, R., Yadav, R., and Pandey, R., 2019, Synthesis, characterization and antimicrobial activities of benzothiazole-imino-benzoic acid ligands and their Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes, Results Chem., 1, 100006.
[11] Herrera, K.M.S., Ferreira, L.S., Braga, A.V., Souza, J.P., Andrade, J.T., Soares, A.C., Soares, L.F., Chagas, R.C.R., and Ferreira, J.M.S., 2019, Synthesis, characterization and antimicrobial activity of Cr(III), Co(II) and Ni(II) complexes with 2-thiazoline-2-tiol derivative ligands against bacteria and yeasts of clinical importance, An. Acad. Bras. Cienc., 91 (4), e20181077.
[12] Al-Zaidi, B.H., Hasson, M.M., and Ismail, A.H, 2019, New complexes of chelating Schiff base: Synthesis, spectral investigation, antimicrobial, and thermal behavior studies, J. Appl. Pharm. Sci., 9 (04), 045–057.
[13] Prajapati, K.N., Brahmbhatt, M.P., Vora, J.J., and Prajapati, P.B., 2019, Synthesis, catalysis and biological study of transition metal(II) chelates with ONO-tridentate Schiff base ligand, J. Pharm. Chem. Biol. Sci., 7 (2), 110–124.
[14] Rahardjo, B., Wijanarko, D.M., Astuti, R., and Martina, A.A., 2018, Synthesis and characterization of diaquadinicotinamide cobalt(II) chloride, AIP Conf. Proc., 2014, 020010.
[15] De, A., Ray, H.P., Jain, P., Kaur, H., and Singh, N., 2020, Synthesis, characterization, molecular docking and DNA cleavage study of transition metal complexes of o-vanillin and glycine derived Schiff base ligand, J. Mol. Struct., 1199, 126901.
[16] Nair, M.S., Arish, D., and Johnson, J., 2016, Synthesis, characterization and biological studies on some metal complexes with Schiff base ligand containing pyrazolone moiety, J. Saudi Chem. Soc., 20, S591–S598.
[17] Himawati, A.W., Kusumaningsih, T., and Rahardjo, S.B., 2020, Cu(II)-3-aminoacetanilide complex: Synthesis and antibacterial activity test, AIP Conf. Proc., 2296, 020067.
[18] Nandiyanto, A.B.D., Oktiani, R., and Ragadhita, R., 2019, How to read and interpret FTIR spectroscope of organic material, Indones. J. Sci. Technol., 60, 4 (1), 97–118.
[19] Venugopal, N., Krishnamurthy, G., Bhojyanaik, H.S., Madhukar Naik, M., and Sunilkumar, N., 2020, Synthesis, characterization, and biological activity of Cu(II) and Co(II) complexes of novel N1,N2-bis(4-methyl quinolin-2-yl)benzene-1,2-diamine: CuO and CoO nanoparticles derived from their metal complexes for photocatalytic activity, Inorg. Nano-Met. Chem., 51 (8), 1117–1126.
[20] Takroni, K.M., Farghaly, T.A., Harras, M.F., and El‐Ghamry, H.A., 2020, Synthesis, structure elucidation, DNA binding and molecular docking studies of novel copper(II) complexes of two 1,3,4‐thiadiazolethiosemicarbazone derivatives, Appl. Organomet. Chem., 34 (10), e5860.
[21] Sevgi, F., Bagkesici, U., Kursunlu, A.N., and Guler, E., 2018, Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes of Schiff bases based-on glycine and phenylalanine: Synthesis, magnetic/thermal properties and antimicrobial activity, J. Mol. Struct., 1154, 256–260.
[22] Batool, S.S., Gilani, S.R., Zainab, S.S., Tahir, M.N., Harrison, W.T.A., Haider, M.S., Syed, Q., Mazhar, S., and Shoaib, M., 2020, Synthesis, Synthesis, crystal structure, thermal studies and antimicrobial activity of a mononuclear Cu(II)-cinnamate complex with N,N,N′,N′-tetramethylethylenediamine as co-ligand, Polyhedron, 178, 114346.
[23] Tamiru, G., Abebe, A., Abebe, M., and Liyew, M., 2019, Synthesis, structural investigation and biological application of new mono-and binuclear cobalt (II) mixed-ligand complexes containing 1, 10-phenanthroline, acetamide and ethylenediamine, Ethiop. J. Sci. Technol., 12 (1), 69–91.
[24] Revathi, N., Sankarganesh, M., Dhaveethu Raja, J., Vinoth Kumar, G.G., Sakthivel, A., and Rajasekaran, R., 2020, Bio-active mixed ligand Cu(II) and Zn(II) complexes of pyrimidine derivative Schiff base: DFT calculation, antimicrobial, antioxidant, DNA binding, anticancer and molecular docking studies, J. Biomol. Struct. Dyn., 39 (8), 3012–3024.
[25] Kafi-Ahmadi, L., and Shirmohammadzadeh, L, 2017, Synthesis of Co(II) and Cr(III) salicylidenic Schiff base complexes derived from thiourea as precursors for nano-sized Co3O4 and Cr2O3 and their catalytic, antibacterial properties, J. Nanostruct. Chem., 7 (2), 179–190.
[26] Bakare, S.B., 2019, Cu(II), Co(II), Ni(II), Mn(II) and Zn(II) Schiff base complexes of 3-hydroxy-4-[N-(2-hydroxynaphthylidene)-amino]-naphthalene-1-sulfonic acid: Synthesis, Spectroscopic, thermal, and antimicrobial studies, Pol. J. Chem. Technol., 21 (3), 26–34.
[27] El-Sawaf, A.K., El-Essawy, F., Nassar, A.A., and El-Samanody, E.S.A., 2018, Synthesis, spectral, thermal and antimicrobial studies on cobalt(II), nickel(II), copper(II), zinc(II), and palladium(II) complexes containing thiosemicarbazone ligand, J. Mol. Struct., 1157, 381–394.
[28] Olanrewaju, A.A., Fabiyi, F.S., Ibeji, C.U., Kolawole, E.G., and Gupta, R., 2020, Synthesis, spectral, structure and computational studies of novel transition metal(II) complexes of (Z)-((dimethylcarbamothioyl)thio)((1,1,1-trifluoro-4-(naphthalen-2-yl)-4-oxobut-2-EN-2yl)oxy), J. Mol. Struct., 1211, 128057.
[29] Obaid, S.M.H., Sultan, J.S., and Al-Hamdani, A.A.S., 2020, Synthesis, characterization and biological efficacies from some new dinuclear metal complexes for base 3-(3,4-dihydroxy-phenyl)-2-[(2-hydroxy-3-methylperoxy-benzylidene)-amino]-2-methyl propionic acid, Indones. J. Chem., 20 (6), 1311–1322.
[30] Aryasetiawan, F., and Karlsson, K., 2019, Modern theory of orbital magnetic moment in solids, J. Phys. Chem. Solids, 128, 87–108.
[31] Ayuel, K., and Zakaria, A., 2018, Orbital and spin contributions to magnetic hyperfine fields of the 3D transition metal ions, J. Magn. Magn. Mater., 457, 142–147.
DOI: https://doi.org/10.22146/ijc.78757
Article Metrics
Abstract views : 2070 | views : 1589Copyright (c) 2023 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.