Triterpenoids from the Stem Bark of Aglaia cucullata (Meliaceae) and Their Cytotoxic Activity against A549 Lung Cancer Cell Line

https://doi.org/10.22146/ijc.78748

Desi Harneti(1*), Iqbal Wahyu Mustaqim(2), Darwati Darwati(3), Al Arofatus Naini(4), Purnama Purnama(5), Erina Hilmayanti(6), Tri Mayanti(7), Nurlelasari Nurlelasari(8), Shabarni Gaffar(9), Rani Maharani(10), Kindi Farabi(11), Unang Supratman(12), Sofa Fajriah(13), Mohamad Nurul Azmi(14), Yoshihito Shiono(15)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(6) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(7) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(8) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(9) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(10) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(11) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(12) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia; Central Laboratory, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(13) Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Komplek Cibinong Science Center – BRIN, Jl. Raya Bogor Km. 46, Cibinong 16911, Indonesia
(14) School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Malaysia
(15) Department of Food, Life, and Environmental Science, Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata 997-8555, Japan
(*) Corresponding Author

Abstract


The Aglaia species, which contains triterpenoids, is the most numerous in the Meliaceae family. The A. cucullata species, of which there are only a few known examples, has received scant research attention. This investigation aims to identify triterpenoids in an n-hexane preparation of A. cucullata stem bark and evaluate their effects against the A549 lung cancer cell line. Five dammarane-type triterpenoids were isolated from the A. cucullata trunk bark, which is (1) (20S)-20-hydroxydammar-24-en-3-one, (2) cabraleone, (3) cabralealactone, (4) eichlerianic acid, and (5) (+)-fouquierol. Their chemical structures were determined using infrared, high-resolution mass spectrometry, and nuclear magnetic resonance, as well as through data comparison of the reported compounds. Compound 1 was priorly separated from the Aglaia genus, compounds 24 were first isolated from the A. cucullata species, and compound 5 has been reportedly isolated from the Meliaceae family and the Aglaia genus. All substances were tested for their lethal potential against the A549 lung cancer cell type. A seco structure in the A ring of dammarane-type triterpenoid might play an important part in the lethal activity of component 4, which showed the greatest activity with an IC50 value of 32.17 µM against the A549 lung cancer cell line.

Keywords


Aglaia cucullate; cytotoxic activity; lung cancer cell (A549); Meliaceae triterpenoids



References

[1] Shang, Y., and Huang, S., 2019, Multi-omics data-driven investigations of metabolic diversity of plant triterpenoids, Plant J., 97 (1), 101–111.

[2] Chen, Y., Zhou, B., Li, J., Tang, H., Tang, J., and Yang, Z., 2018, Formation and change of chloroplast-located plant metabolites in response to light conditions, Int. J. Mol. Sci., 19 (3), 654.

[3] Zheng, X., Luo, X., Ye, G., Chen, Y., Ji, X., Wen, L., Xu, Y., Xu, H., Zhan, R., and Chen, W., 2015, Characterisation of two oxidosqualene cyclases responsible for triterpenoid biosynthesis in Ilex asprella, Int. J. Mol. Sci., 16 (2), 3564–3578.

[4] Ren, Y., and Kinghorn, A.D., 2019, Natural product triterpenoids and their semi-synthetic derivatives with potential anticancer activity, Planta Med., 85 (11/12), 802–814.

[5] Lim, H.J., Bak, S.G., Lim, H.J., Lee, S.W., Lee, S., Ku, S.K., Park, S.I., Lee, S.J., and Rho, M.C., 2020, Acyclic triterpenoid isolated from Alpinia katsumadai alleviates formalin-induced chronic mouse paw inflammation by inhibiting the phosphorylation of ERK and NF-κB, Molecules, 25 (15), 3345.

[6] Li, J., Ni, G., Li, L., Liu, Y., Mai, Z., Wang, R., and Yu, D., 2019, New iridal-type triterpenoid derivatives with cytotoxic activities from Belamcanda chinensis, Bioorg. Chem., 83, 20–28.

[7] An, X., Wang, J., Yu, X., Wu, H., and Liu, W., 2022, Two new polypodane-type bicyclic triterpenoids from mastic, Open Chem., 20 (1), 267–271.

[8] Stonik, V.A., and Kolesnikova, S.A., 2021, Malabaricane and isomalabaricane triterpenoids, including their glycoconjugated forms, Mar. Drugs, 19 (6), 327.

[9] Song, M., Chan, G., Lin, L.G., Li, D., Zhang, K., Zhang, X.Q., Ye, W.C., Li, N., and Zhang, Q.W., 2022, Triterpenoids from the fruits of Melia azedarach L. and their cytotoxic activities, Phytochemistry, 201, 113280.

[10] Saptanti, K., Heliawati, L., Hermawati, E., and Syah, Y.M., 2022, Pentacyclic triterpenes from the leaves extract of Sandoricum koetjape, J. Nat. Med., 76 (4), 842–848.

[11] Wang, Y.R., Yu, Y., Li, S.M., Liu, W., Li, W., Morris-Natschke, S.L., Goto, M., Lee, K.H., and Huang, X.F., 2018, Salvisertin A, a new hexacyclic triterpenoid, and other bioactive terpenes from Salvia deserta root, Chem. Biodiversity, 15 (4), e1800019.

[12] Ouyang, X.L., Qin, F., Huang, R.Z., Liang, D., Wang, C.G., Wang, H.S., and Liao, Z.X., 2019, NF-κB inhibitory and cytotoxic activities of hexacyclic triterpene acid constituents from Glechoma longituba, Phytomedicine, 63, 153037.

[13] Teixeira, F.S., Vidigal, S.S.M.P., Pimentel, L.L., Costa, P.T., Tavares‐Valente, D., Azevedo‐Silva, J., Pintado, M.E., Fernandes, J.C., and Rodríguez‐Alcalá, L.M., 2021, Phytosterols and novel triterpenes recovered from industrial fermentation coproducts exert in vitro anti‐inflammatory activity in macrophages, Pharmaceuticals, 14 (6), 583.

[14] Zhang, J., Zhang, Q., Xu, Y., Li, H., Wang, C., Liu, Z., Liu, P., Liu, Y., Meng, Q., Zhao, F., and Zhao, F., 2019, Synthesis and in vitro anti-inflammatory activity of C20 epimeric ocotillol-type triterpenes and protopanaxadiol, Planta Med., 85 (4), 292–301.

[15] Muhammad, D., Hubert, J., Lalun, N., Renault, J.H., Bobichon, H., Nour, M., and Voutquenne-Nazabadioko, L., 2015, Isolation of flavonoids and triterpenoids from the fruits of Alphitonia neocaledonica and evaluation of their anti-oxidant, antityrosinase and cytotoxic activities, Phytochem. Anal., 26 (2), 137–144.

[16] Oprean, C., Zambori, C., Borcan, F., Soica, C., Zupko, I., Minorics, R., Bojin, F., Ambrus, R., Muntean, D., Danciu, C., Pinzaru, I.A., Dehelean, C., Paunescu, V., and Tanasie, G., 2016, Anti-proliferative and antibacterial in vitro evaluation of the polyurethane nanostructures incorporating pentacyclic triterpenes, Pharm. Biol., 54 (11), 2714–2722.

[17] Hisham Shady, N., Youssif, K.A., Sayed, A.M., Belbahri, L., Oszako, T., Hassan, H.M., and Abdelmohsen, U.R., 2021, Sterols and triterpenes: Antiviral potential supported by in-silico analysis, Plants, 10 (1), 41.

[18] Innocente, A., Casanova, B.B., Klein, F., Lana, A.D., Pereira, D., Muniz, M.N., Sonnet, P., Gosmann, G., Fuentefria, A.M., and Gnoatto, S.C.B., 2014, Synthesis of isosteric triterpenoid derivatives and antifungal activity, Chem. Biol. Drug Des., 83 (3), 344–349.

[19] Nazaruk, J., and Borzym-Kluczyk, M., 2015, The role of triterpenes in the management of diabetes mellitus and its complications, Phytochem. Rev., 14 (4), 675–690.

[20] Xu, G.B., Xiao, Y.H., Zhang, Q.Y., Zhou, M., and Liao, S.G., 2018, Hepatoprotective natural triterpenoids, Eur. J. Med. Chem., 145, 691–716.

[21] Yu, C.X., Wang, R.Y., Qi, F.M., Su, P.J., Yu, Y.F., Li, B., Zhao, Y., Zhi, D.J., Zhang, Z.X., and Fei, D.Q., 2019, Eupulcherol A, a triterpenoid with a new carbon skeleton from: Euphorbia pulcherrima, and its anti-Alzheimer’s disease bioactivity, Org. Biomol. Chem., 18 (1), 76–80.

[22] Renda, G., Gökkaya, İ., and Şöhretoğlu, D., 2022, Immunomodulatory properties of triterpenes, Phytochem. Rev., 21 (2), 537–563.

[23] Lehbili, M., Alabdul Magid, A., Kabouche, A., Voutquenne-Nazabadioko, L., Abedini, A., Morjani, H., Gangloff, S.C., and Kabouche, Z., 2018, Antibacterial, antioxidant and cytotoxic activities of triterpenes and flavonoids from the aerial parts of Salvia barrelieri Etl, Nat. Prod. Res., 32 (22), 2683–2691.

[24] Jang, E., and Lee, J.H., 2021, Promising anticancer activities of alismatis rhizome and its triterpenes via p38 and PI3k/Akt/mTOR signaling pathways, Nutrients, 13 (7), 2455.

[25] Nogueira, T.S.R., Passos, M.S., Nascimento, L.P.S., Arantes, M.B.S., Monteiro, N.O., Boeno, S.I.S., de Carvalho Junior, A., Azevedo, O.A., Terra, W.S., Vieira, M.G.C., Braz-Filho, R., and Curcino Vieira, I.J.C., 2020, Chemical compounds and biologic activities: A review of Cedrela genus, Molecules, 25 (22), 5401.

[26] Hamid, A.A., Aiyelaagbe, O.O., Negi, A.S., Kaneez, F., Luqman, S., Oguntoye, S.O., Kumar, S.B., and Zubair, M., 2018, Isolation and antiproliferative activity of triterpenoids and fatty acids from the leaves and stem of Turraea vogelii Hook. f. ex benth, Nat. Prod. Res., 33 (2), 296–301.

[27] Happi, G.M., Kouam, S.F., Talontsi, F.M., Zühlke, S., Lamshöft, M., and Spiteller, M., 2015, Minor secondary metabolites from the bark of Entandrophragma congoënse (Meliaceae), Fitoterapia, 102, 35–40.

[28] Saleem, S., Muhammad, G., Hussain, M.A., and Bukhari, S.N.A., 2018, A comprehensive review of phytochemical profile, bioactives for pharmaceuticals, and pharmacological attributes of Azadirachta indica, Phytother. Res., 32 (7), 1241–1272.

[29] Hernandez, V., De Leo, M., Cotugno, R., Braca, A., De Tommasi, N., and Severino, L., 2018, New tirucallane-type triterpenoids from Guarea guidonia, Planta Med., 84 (9/10), 716–720.

[30] Matsumoto, T., Kitagawa, T., Ohta, T., Yoshida, T., Imahori, D., Teo, S., bin Ahmad, H.S., and Watanabe, T., 2019, Structures of triterpenoids from the leaves of Lansium domesticum, J. Nat. Med., 73 (4), 727–734.

[31] Salam, S., Harneti, D., Maharani, R., Nurlelasari, N., Safari, A., Hidayat, A.T., Lesmana, R., Nafiah, M.A., Supratman, U., Kyle Prescott, T.A., and Shiono, Y., 2021, Cytotoxic triterpenoids from Chisocheton pentandrus, Phytochemistry, 187, 112759.

[32] Wang, W., Xia, Z., Tian, Z., Jiang, H., Zhan, Y., Liu, C., Li, C., and Zhou, H., 2020, Chemical constituents from the fruits of Melia azedarach (Meliaceae), Biochem. Syst. Ecol., 92, 104094.

[33] Naini, A.A., Mayanti, T., and Supratman, U., 2022, Triterpenoids from Dysoxylum genus and their biological activities, Arch. Pharmacal Res., 45 (2), 63–82.

[34] Zhang, L., Xia, J., Duan, Y., Wei, K., Gao, R., Li, D., Liu, X., Zhang, T., and Qiu, M., 2021, Toonamicrocarpavarin, a new tirucallane-type triterpenoid from Toona ciliata, Nat. Prod. Res., 35 (2), 266–271.

[35] Hutagaol, R.P., Harneti, D., Safari, A., Hidayat, A.T., Supratman, U., Awang, K., and Shiono, Y., 2021, Cytotoxic triterpenoids from the stem bark of Aglaia angustifolia, J. Asian Nat. Prod. Res., 23 (8), 781–788.

[36] Meepol, W., Maxwell, G.S., and Havanond, S., 2020, Aglaia cucullata: A little-known mangrove with big potential for research, ISME/GLOMIS Electron. J., 18 (1), 4–9.

[37] Duke, N., Sukardjo, S., and Kathiresan, K., 2010, Aglaia cucullate, The IUCN Red List of Threatened Species, https://www.iucnredlist.org/species/34364/9856175, Accessed on September 30th, 2022.

[38] Ahmed, F., Toume, K., Sadhu, S.K., Ohtsuki, T., Arai, M.A., and Ishibashi, M., 2010, Constituents of Amoora cucullata with TRAIL resistance-overcoming activity, Org. Biomol. Chem., 8 (16), 3696–3703.

[39] Pancharoen, R., Sommeechai, M., Maelim, S., Suanpaga, W., Srichaichana, J., Barber, P., and Dell, B., 2021, Phenology of urban trees in a tropical urban forest in Thailand, Songklanakarin J. Sci. Technol., 43 (1), 87–95.

[40] Chumkaew, P., Kato, S., and Chantrapromma, K., 2006, Potent cytotoxic rocaglamide derivatives from the fruits of Amoora cucullata, Chem. Pharm. Bull., 54 (9), 1344–1346.

[41] DeFilipps, R.A., and Krupnick, G.A., 2018, The medicinal plants of Myanmar, PhytoKeys, 102, 1–341.

[42] Abdelfattah, M.S., Toume, K., Ahmed, F., Sadhu, S.K., and Ishibashi, M., 2010, Cucullamide, a new putrescine bisamide from Amoora cucullata, Chem. Pharm. Bull., 58 (8), 1116–1118.

[43] Wang, K.C., Wang, P.H., and Lee, S.S., 1997, Microbial transformation of protopanaxadiol and protopanaxatriol derivatives with Mycobacterium sp. (NRRL B-3805), J. Nat. Prod., 60 (12), 1236–1241.

[44] Asai, T., and Fujimoto, Y., 2011, 2-Acety-1-(3-glycosyloxyoctadecanoyl)glycerol and dammarane triterpenes in the exudates from glandular trichome-like secretory organs on the stipules and leaves of Cerasus yedoensis, Phytochem. Lett., 4 (1), 38–42.

[45] Roux, D., Martin, M.T., Adeline, M.T., Sevenet, T., Hadi, A.H.A., and Païs, M., 1998, Foveolins A and B, dammarane triterpenes from Aglaia foveolata, Phytochemistry, 49 (6), 1745–1748.

[46] Aalbersberg, W., and Singh, Y., 1991, Dammarane triterpenoids from Dysoxylum richii, Phytochemistry, 30 (3), 921–926.

[47] Hisham, A., Ajitha Bai, M.D., Fujimoto, Y., Hara, N., and Shimada, H., 1996, Complete 1H and 13C NMR spectral assignment of cabraleadiol, a dammarane triterpene from Dysoxylum malabaricum Bedd, Magn. Reson. Chem., 34 (2), 146–150.

[48] Oktaviani, D., Sukmawati, W., Farabi, K., Harneti, D., Nurlelasari, N., Darwati, D., Mahari, R., Mayanti, T., Safari, A., and Supratman, U., 2022, Terpenoids from the stem bark of Aglaia elaeagnoidea and their cytotoxic activity against HeLa and DU145 cancer cell lines, Molekul, 17 (1), 76–84.

[49] Phongmaykin, J., Kumamoto, T., Ishikawa, T., Suttisri, R., and Saifah, E., 2008, A new sesquiterpene and other terpenoid constituents of Chisocheton penduliflorus, Arch. Pharmacal Res., 31 (1), 21–27.

[50] Kamarulzaman, F.A., Mohamad, K., Awang, K., and Lee, H.B., 2014, Chemical constituents of Aglaia lanuginose, Pertanika J. Sci. Technol., 22 (1), 163–174.

[51] Ren, Y., Anaya-Eugenio, G.D., Czarnecki, A.A., Ninh, T.N., Yuan, C., Chai, H.B., Soejarto, D.D., Burdette, J.E., de Blanco, E.J.C., and Kinghorn, A.D., 2018, Cytotoxic and NF-κB and mitochondrial transmembrane potential inhibitory pentacyclic triterpenoids from Syzygium corticosum and their semi-synthetic derivatives, Bioorg. Med. Chem., 26 (15), 4452–4460.

[52] Boncler, M., Rózalski, M., Krajewska, U., Podsędek, A., and Watala, C., 2014, Comparison of PrestoBlue and MTT assays of cellular viability in the assessment of anti-proliferative effects of plant extracts on human endothelial cells, J. Pharmacol. Toxicol. Methods, 69 (1), 9–16.

[53] Xu, M., Mccanna, D.J., and Sivak, J.G., 2015, Use of the viability reagent PrestoBlue in comparison with alamarBlue and MTT to assess the viability of human corneal epithelial cells, J. Pharmacol. Toxicol. Methods, 71, 1–7.

[54] Sajjadi, S.E., Ghanadian, M., Haghighi, M., and Mouhebat, L., 2015, Cytotoxic effect of Cousinia verbascifolia Bunge against OVCAR-3 and HT-29 cancer cells, J. HerbMed Pharmacol., 4 (1), 15–19.



DOI: https://doi.org/10.22146/ijc.78748

Article Metrics

Abstract views : 4369 | views : 1101 | views : 541


Copyright (c) 2023 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.