Fast Microwave-Assisted Green Synthesis of Silver Nanoparticles Using Low Concentration of Seminyak (Champeria sp.) Leaf Extract

https://doi.org/10.22146/ijc.78545

Muhammad Bagas Ananda(1), Fathan Aditya Sanjaya(2), Tami Bachrurozy(3), Helmi Majid Ar Rasyid(4), Anggraini Barlian(5), Akfiny Hasdi Aimon(6), Fitriyatul Qulub(7), Prihartini Widiyanti(8), Arie Wibowo(9*)

(1) Department of Materials and Metallurgical Engineering, Faculty of Industrial Technology and Systems Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111
(2) Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
(3) Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
(4) Magister Nanotechnology, Graduate School, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
(5) School of Life Science & Technology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
(6) Department of Physics, Faculty of Mathematical and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, 40132, Bandung, Indonesia
(7) Biomedical Engineering Study Program, Department of Physics, Faculty of Science and Technology, Universitas Airlangga, Universitas Airlangga Campus C, Dr. Ir. H. Sukarno, Mulyorejo, Surabaya 60115
(8) Biomedical Engineering Study Program, Department of Physics, Faculty of Science and Technology, Universitas Airlangga, Universitas Airlangga Campus C, Dr. Ir. H. Sukarno, Mulyorejo, Surabaya 60115
(9) Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
(*) Corresponding Author

Abstract


Silver nanoparticles (AgNPs) are fascinating materials for biomedical applications thanks to their strong antibacterial activity and biocompatibility. This study applied the green synthesis method using 0.5 wt.% Seminyak leaf extract and assisted with one min microwave irradiation to enhance AgNPs formation. Extremely small sizes AgNPs with an average particle size of 9.1 ± 4.1 nm and spherical shapes were obtained. The synthesized AgNPs displayed potent antibacterial activity against Escherichia coli and Staphylococcus aureus bacteria with a zone of inhibition of 12.3 ± 0.1 and 13.7 ± 0.7 mm, respectively. The MTT assay results demonstrated that the cells’ viability of the obtained AgNPs was 88.5 ± 7.0 %, implying biocompatibility for biomedical applications.

Keywords


antibacterial materials; green synthesis; microwave irradiation; Seminyak leaf extract; silver nanoparticles

Full Text:

Full Text PDF


References

[1] Ye, Z., Zhu, X., Mutreja, I., Boda, S.K., Fischer, N.G., Zhang, A., Lui, C., Qi, Y., and Aparicio, C., 2021, Biomimetic mineralized hybrid scaffolds with antimicrobial peptides, Bioact. Mater., 6 (8), 2250–2260.

[2] Tamayo Marín, J.A., Londoño, S.R., Delgado, J., Navia Porras, D.P., Valencia Zapata, M.E., Mina Hernandez, J.H., Valencia, C.H., and Grande Tovar, C.D., 2019, Biocompatible and antimicrobial electrospun membranes based on nanocomposites of chitosan/poly (vinyl alcohol)/graphene oxide, Int. J. Mol. Sci., 20 (12), 2987.

[3] Wibowo, A., Tajalla, G.U., Marsudi, M.A., Cooper, G., Asri, L.A., Liu, F., Ardy, H., and Bartolo, P.J., 2021, Green synthesis of silver nanoparticles using extract of Cilembu sweet potatoes (Ipomoea batatas L var. Rancing) as potential filler for 3D printed electroactive and anti-infection scaffolds, Molecules, 26 (7), 2042.

[4] Citradewi, P.W., Hidayat, H., Purwiandono, G., Fatimah, I., and Sagadevan, S., 2021, Clitorea ternatea-mediated silver nanoparticle-doped hydroxyapatite derived from cockle shell as antibacterial material, Chem. Phys. Lett., 769, 138412.

[5] Garibo, D., Borbón-Nuñez, H.A., de León, J.N.D., García Mendoza, E., Estrada, I., Toledano-Magaña, Y., Tiznado, H., Ovalle-Marroquin, M., Soto-Ramos, A.G., Blanco, A., Rodríguez, J.A., Romo, O.A., Chávez-Almazán, L.A., and Susarrey-Arce, A., 2020, Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity, Sci. Rep., 10 (1), 12805.

[6] Tarannum, N., Divya, D., and Gautam, Y.K., 2019, Facile green synthesis and applications of silver nanoparticles: A state-of-the-art review, RSC Adv., 9 (60), 34926–34948.

[7] Allafchian, A.R., Vahabi, M.R., Jalali, S.A.H., Mahdavi, S.S., Sepahvand, S., and Farhang, H.R., 2022, Design of green silver nanoparticles mediated by Ferula ovina Boiss. extract with enhanced antibacterial effect, Chem. Phys. Lett., 791, 139392.

[8] Ragasa, C.Y., Ng, V.A.S., Ulep, R.A., Brkljača, R., and Urban, S., 2015, Chemical constituents of Champereia manillana (Blume) Merrill, Pharm. Lett., 7 (7), 256–261.

[9] Abdul Wahab, N., Ahdan, R., Ahmad Aufa, Z., Kong, K.W., Johar, M.H., Shariff Mohd, Z., and Ismail, A., 2015, Nutritional values and bioactive components of under‐utilised vegetables consumed by indigenous people in Malaysia, J. Sci. Food Agric., 95 (13), 2704–2711.

[10] Kaur, N., Singh, A., and Ahmad, W., 2022, Microwave assisted green synthesis of silver nanoparticles and its application: A review, J. Inorg. Organomet. Polym. Mater., 2022, s10904-022-02470-2.

[11] Francis, S., Joseph, S., Koshy, E.P., and Mathew, B., 2018, Microwave assisted green synthesis of silver nanoparticles using leaf extract of Elephantopus scaber and its environmental and biological applications, Artif. Cells, Nanomed., Biotechnol., 46 (4), 795–804.

[12] Hardiansyah, A., Budiman, W.J., Yudasari, N., Isnaeni, I., Kida, T., and Wibowo, A., 2021, Facile and green fabrication of microwave-assisted reduced graphene oxide/titanium dioxide nanocomposites as photocatalysts for rhodamine 6G degradation, ACS Omega, 6 (47), 32166–32177.

[13] Yasir, M., Singh, J., Tripathi, M.K., Singh, P., and Shrivastava, R., 2017, Green synthesis of silver nanoparticles using leaf extract of common arrowhead houseplant and its anticandidal activity, Pharmacogn. Mag., 13 (Suppl. 4), S840–S844.

[14] Rai, Y., Pathak, R., Kumari, N., Sah, D.K., Pandey, S., Kalra, N., Soni, R., Dwarakanath, B., and Bhatt, A.N., 2018, Mitochondrial biogenesis and metabolic hyperactivation limits the application of MTT assay in the estimation of radiation induced growth inhibition, Sci. Rep., 8 (1), 1531.

[15] Chakravarty, A., Ahmad, I., Singh, P., Ud Din Sheikh, M., Aalam, G., Sagadevan, S., and Ikram, S., 2022, Green synthesis of silver nanoparticles using fruits extracts of Syzygium cumini and their bioactivity, Chem. Phys. Lett., 795, 139493.

[16] Melkamu, W.W., and Bitew, L.T., 2021, Green synthesis of silver nanoparticles using Hagenia abyssinica (Bruce) JF Gmel plant leaf extract and their antibacterial and anti-oxidant activities, Heliyon, 7 (11), e08459.

[17] Nadagouda, M.N., Speth, T.F., and Varma, R.S., 2011, Microwave-assisted green synthesis of silver nanostructures, Acc. Chem. Res., 44 (7), 469–478.

[18] Ashraf, J.M., Ansari, M.A., Khan, H.M., Alzohairy, M.A., and Choi, I., 2016, Green synthesis of silver nanoparticles and characterization of their inhibitory effects on AGEs formation using biophysical techniques, Sci. Rep., 6 (1), 20414.

[19] Fatimah, I., and Aftrid, Z.H.V.I., 2019, Characteristics and antibacterial activity of green synthesized silver nanoparticles using red spinach (Amaranthus tricolor L.) leaf extract, Green Chem. Lett. Rev., 12 (1), 25–30.

[20] Nakamura, T., Magara, H., Herbani, Y., and Sato, S., 2011, Fabrication of silver nanoparticles by highly intense laser irradiation of aqueous solution, Appl. Phys. A, 104 (4), 1021–1024.

[21] Fatimah, I., 2016, Green synthesis of silver nanoparticles using extract of Parkia speciosa Hassk pods assisted by microwave irradiation, J. Adv. Res., 7 (6), 961–969.

[22] Swidan, N.S., Hashem, Y.A., Elkhatib, W.F., and Yassien, M.A., 2022, Antibiofilm activity of green synthesized silver nanoparticles against biofilm associated enterococcal urinary pathogens, Sci. Rep., 12 (1), 3869.

[23] Mussin, J., Robles-Botero, V., Casañas-Pimentel, R., Rojas, F., Angiolella, L., San Martín-Martínez, E., and Giusiano, G., 2021, Antimicrobial and cytotoxic activity of green synthesis silver nanoparticles targeting skin and soft tissue infectious agents, Sci. Rep., 11 (1), 14566.

[24] Moodley, J.S., Krishna, S.B.N., Pillay, K., and Govender, P., 2018, Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential, Adv. Nat. Sci: Nanosci. Nanotechnol., 9, 015011.

[25] Khalil, M.M.H., Ismail, E.H., El-Baghdady, K.Z., and Mohamed, D., 2014, Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity, Arabian J. Chem., 7 (6), 1131–1139.

[26] Allafchian, A., Balali, F., Vahabi, M.R., and Jalali, S.A.H., 2022, Antibacterial and cytotoxic effects of silver nanoparticles fabricated by Eryngium billarderi Delar. extract, Chem. Phys. Lett., 791, 139385.

[27] Wang, Y., Chinnathambi, A., Nasif, O., and Alharbi, S.A., 2021, Green synthesis and chemical characterization of a novel anti-human pancreatic cancer supplement by silver nanoparticles containing Zingiber officinale leaf aqueous extract, Arabian J. Chem., 14 (4), 103081.

[28] Hong, X., Wen, J., Xiong, X., and Hu, Y., 2016, Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method, Environ. Sci. Pollut. Res., 23 (5), 4489–4497.

[29] Madivoli, E.S., Kareru, P.G., Gachanja, A.N., Mugo, S.M., Makhanu, D.S., Wanakai, S.I., and Gavamukulya, Y., 2020, Facile synthesis of silver nanoparticles using Lantana trifolia aqueous extracts and their antibacterial activity, J. Inorg. Organomet. Polym. Mater., 30 (8), 2842–2850.

[30] Davis, W.W., and Stout, T.R., 1971, Disc plate method of microbiological antibiotic assay: I. Factors influencing variability and error, Appl. Microbiol., 22 (4), 659–665.

[31] Martha, A.A., Permatasari, D.I., Dewi, E.R., Wijaya, N.A., Kunarti, E.S., Rusdiarso, B., and Nuryono, N., 2022, Natural magnetic particles/chitosan impregnated with silver nanoparticles for antibacterial agents, Indones. J. Chem., 22 (3), 620–629.

[32] International Organization for Standardization, 2009, Biological evaluation of medical devices — Part 5: Tests for in vitro cytotoxicity, ISO 10993-5:2009, https://www.iso.org/standard/36406.html.

[33] El-Hussein, A., and Hamblin, M.R., 2017, ROS generation and DNA damage with photo-inactivation mediated by silver nanoparticles in lung cancer cell line, IET Nanobiotechnol., 11 (2), 173–178.



DOI: https://doi.org/10.22146/ijc.78545

Article Metrics

Abstract views : 3134 | views : 1690


Copyright (c) 2023 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.