The Stability Study of Electrochemical Aptasensor to Detect SARS-CoV-2 Spike Protein and Its Application for Clinical Samples of Nasopharyngeal Swab

https://doi.org/10.22146/ijc.77887

Arum Kurnia Sari(1), Ghina Nur Fadhilah(2), Irkham Irkham(3), Muhammad Yusuf(4), Shabarni Gaffar(5), Yeni Wahyuni Hartati(6*)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia
(4) Molecular Biotechnology and Bioinformatics Research Center, Universitas Padjadjaran, Jl. Singaperbangsa No. 2, Bandung 40132, Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia; Molecular Biotechnology and Bioinformatics Research Center, Universitas Padjadjaran, Jl. Singaperbangsa No. 2, Bandung 40132, Indonesia
(6) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia; Molecular Biotechnology and Bioinformatics Research Center, Universitas Padjadjaran, Jl. Singaperbangsa No. 2, Bandung 40132, Indonesia
(*) Corresponding Author

Abstract


The stability characteristics associated with the shelf life of a biosensor are rarely investigated, however, they are important factors for real applications. Stability is the variation in the detection signal over a long period of storage. This study aims to determine the effect of storage time on the stability of SARS-CoV-2 receptor binding domain (RBD) spike protein aptamers related to shelf life and the performance of an electrochemical aptasensor on clinical samples. The research method includes a stability study conducted using the accelerated stability method based on the Arrhenius equation at three variations of temperature and storage time. The electrochemical aptasensor's performance was evaluated on clinical samples of 32 nasopharyngeal swabs at biosafety level 3 and its potential on clinical saliva samples. The results indicated that the developed electrochemical aptasensor was stable for ± 15 days with a shelf life of 18, 17 and 16 days, respectively, at 25, 40 and 50 °C. This electrochemical aptasensor has the potential to be a Point of Care (POC) device for the clinical detection of SARS-CoV-2 because it can be tested on clinical samples of nasopharyngeal swabs and the results show its potential application to detect in clinical saliva samples.

Keywords


stability; aptasensor; SARS-CoV-2 RBD S Protein

Full Text:

Full Text PDF


References

[1] Schoeman, D., and Fielding, B.C., 2019, Coronavirus envelope protein: Current knowledge, Virol. J., 16 (1), 69.

[2] Jin, Y., Yang, H., Ji, W., Wu, W., Chen, S., Zhang, W., and Duan, G., 2020, Virology, epidemiology, pathogenesis, and control of COVID-19, Viruses, 12 (4), 372.

[3] Walls, A.C., Park, Y.J., Tortorici, M.A., Wall, A., McGuire, A.T., and Veesler, D., 2020, Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein, Cell, 180 (2), 281–292.e6.

[4] Tai, W., He, L., Zhang, X., Pu, J., Voronin, D., Jiang, S., Zhou, Y., and Du, L., 2020, Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: Implication for development of RBD protein as a viral attachment inhibitor and vaccine, Cell. Mol. Immunol., 17 (6), 613–620.

[5] Song, Y., Song, J., Wei, X., Huang, M., Sun, M., Zhu, L., Lin, B., Shen, H., Zhu, Z., and Yang, C., 2020, Discovery of aptamers targeting receptor-binding domain of the SARS-CoV-2 spike glycoprotein, Anal. Chem., 92 (14), 9895–9900.

[6] Drobysh, M., Ramanaviciene, A., Viter, R., and Ramanavicius, A., 2021, Affinity sensors for the diagnosis of COVID-19, Micromachines, 12 (4), 390.

[7] Cui, F., and Zhou, H.S., 2020, Diagnostic methods and potential portable biosensors for coronavirus disease 2019, Biosens. Bioelectron., 165, 112349.

[8] Chen, Z., Wu, Q., Chen, J., Ni, X., and Dai, J., 2020, A DNA aptamer based method for detection of SARS-CoV-2 nucleocapsid protein, Virol. Sin., 35 (3), 351–354.

[9] Hartati, Y.W., Syahruni, S., Gaffar, S., Wyantuti, S., Yusuf, M., and Subroto, T., 2021, An electrochemical aptasensor for the detection of HER2 as a breast cancer biomarker based on gold nanoparticles-aptamer bioconjugates, Indones. J. Chem., 21 (6), 1526–1536.

[10] Fazrin, E.I., Sari, A.K., Setiyono, R., Gaffar, S., Sofiatin, Y., Bahti, H.H., and Hartati, Y.W., 2022, The selectivity and stability of epithelial sodium channel (ENaC) aptamer as an electrochemical biosensor, Anal. Bioanal. Electrochem., 14 (7), 715–729.

[11] Hartati, Y.W., Nurdjanah, D., Wyantuti, S., Anggraeni, A., and Gaffar, S., 2018, Gold nanoparticles modified screen-printed immunosensor for cancer biomarker HER2 determination based on anti HER2 bioconjugates, AIP Conf. Proc., 2049, 020051.

[12] Kaya, H.O., Cetin, A.E., Azimzadeh, M., and Topkaya, S.N., 2021, Pathogen detection with electrochemical biosensors: Advantages, challenges and future perspectives, J. Electroanal. Chem., 882, 114989.

[13] Hartati, Y.W., Wyantuti, S., Firdaus, M.L., Auliany, N., Surbakti, R., and Gaffar, S., 2016, A rapid and sensitive diagnosis of typhoid fever based on nested PCR-voltammetric DNA biosensor using flagellin gene fragment, Indones. J. Chem., 16 (1), 87–91.

[14] Sari, A.K., Hartati, Y.W., Gaffar, S., Anshori, I., Hidayat, D., and Wiraswati, H.L., 2022, The optimization of an electrochemical aptasensor to detect RBD protein S SARS-CoV-2 as a biomarker of COVID-19 using screen-printed carbon electrode/AuNP, J. Electrochem. Sci. Eng., 21 (1), 219–235.

[15] Chand, R., and Neethirajan, S., 2017, Microfluidic platform integrated with graphene-gold nano-composite aptasensor for one-step detection of norovirus, Biosens. Bioelectron., 98, 47–53.

[16] Labib, M., Zamay, A.S., Muharemagic, D., Chechik, A.V., Bell, J.C., and Berezovski, M.V., 2012, Aptamer-based viability impedimetric sensor for viruses, Anal. Chem., 84 (4), 1813−1816.

[17] Yao, C.Y., and Fu, W. L, 2014, Biosensors for hepatitis B virus detection, World J. Gastroenterol., 20 (35), 12485–12492.

[18] Fadhilah, G.N., Yusuf, M., and Hartati, Y.W., 2020, Electrochemical immunosensor to detect hepatitis B antigen (HBsAg) and hepatitis B e antigen (HBeAg) as biomarkers of hepatitis B infection: A review, Curr. Top. Electrochem., 22, 121–127.

[19] Mahari, S., Roberts, A., Shahdeo, D., and Gandhi, S., 2020, eCovSens-ultrasensitive novel in-house built printed circuit board based electrochemical device for rapid detection of nCovid-19 antigen, a spike protein domain 1 of SARS-CoV-2, bioRxiv, 2020.04.24.059204.

[20] Fabiani, L., Saroglia, M., Galatà, G., De Santis, R., Fillo, S., Luca, V., Faggioni, G., D'Amore, N., Regalbuto, E., Salvatori, P., Terova, G., Moscone, D., Lista, F., and Arduini, F., 2020, Magnetic beads combined with carbon black-based screen-printed electrodes for COVID-19: A reliable and miniaturized electrochemical immunosensor for SARS-CoV-2 detection in saliva, Biosens. Bioelectron., 171, 112686.

[21] Zhao, H., Liu, F., Xie, W., Zhou, T.C., OuYang, J., Jin, L., Li, H., Zhao, C.Y., Zhang, L., Wei, J., Zhang, Y.P., and Li, C.P., 2021, Ultrasensitive supersandwich-type electrochemical sensor for SARS-CoV-2 from the infected COVID-19 patients using a smartphone, Sens. Actuators, B, 327, 128899.

[22] Tripathy, S., and Singh, S.G., 2020, Label-free electrochemical detection of DNA hybridization: A method for COVID-19 diagnosis, Trans. Indian Natl. Acad. Eng., 5 (2), 205–209.

[23] Ali, M.A., Hu, C., Jahan, S., Yuan, B., Saleh, M.S., Ju, E., Gao, S.J., and Panat, R., 2021, Sensing of COVID-19 antibodies in seconds via aerosol jet nanoprinted reduced-graphene-oxide-coated 3D electrodes, Adv. Mater., 33 (7), 2006647.

[24] Rashed, M.Z., Kopechek, J.A., Priddy, M.C., Hamorsky, K.T., Palmer, K.E., Mittal, N., Valdez, J., Flynn, J., and Williams, S.J., 2021, Rapid detection of SARS-CoV-2 antibodies using electrochemical impedance-based detector, Biosens. Bioelectron., 171, 112709.

[25] Yakoh, A., Pimpitak, U., Rengpipat, S., Hirankarn, N., Chailapakul, O., and Chaiyo, S., 2021, Paper-based electrochemical biosensor for diagnosing COVID-19: Detection of SARS-CoV-2 antibodies and antigen, Biosens. Bioelectron., 176, 112912.

[26] Idili, A., Parolo, C., Alvarez-Diduk, R., and Merkoçi, A., 2021, Rapid and efficient detection of the SARS-CoV-2 spike protein using an electrochemical aptamer-based sensor, ACS Sens., 6 (8), 3093–3101.

[27] Abrego-Martinez, J.C., Jafari, M., Chergui, S., Pavel, C., Che, D., and Siaj, M., 2022, Aptamer-based electrochemical biosensor for rapid detection of SARS-CoV-2: Nanoscale electrode-aptamer-SARS-CoV-2 imaging by photo-induced force microscopy, Biosens. Bioelectron.,195, 113595.

[28] Fadhilah, G.N., Yusuf, M., Sari, A.K., Tohari, T.R., Wiraswati, H.L., Ekawardhani, S., Faridah, L., Fauziah, N., Anshori, I., and Hartati, Y.W., 2023, An scFv-based impedimetric immunosensor using SPCE/AuNP for RBD of SARS-CoV-2 detection, ChemistrySelect, 8 (1), e202203928.

[29] Sari, A.K., Gaffar, S., and Hartati, Y.W., 2022, A review on the development of aptamer immobilization techniques in aptamer-based electrochemical biosensors for viruses detection, Anal. Bioanal. Electrochem., 14 (1), 127–143.

[30] Sahoo, S., Sahu, S.N., Pattanayak, S.K., Misra, N., and Suar, M., 2020, “Biosensor and Its Implementation in Diagnosis of Infectious Diseases” in Smart Biosensors in Medical Care, Eds. Chaki, J., Dey, N., and Se D., Academic Press, Cambridge, Massachusetts, United States, 29–47.

[31] Naresh, V., and Lee, N., 2021, A review on biosensors and recent development of nanostructured materials-enabled biosensors, Sensors, 21 (4), 1109.

[32] Choi, M.M.F, 2005, Application of a long shelf-life biosensor for the analysis of L-lactate in dairy products and serum samples, Food Chem., 92 (3), 575–581.

[33] Nasiri, K., and Dimitrova, A., 2021, Comparing saliva and nasopharyngeal swab specimens in the detection of COVID-19: A systematic review and meta-analysis, J. Dent. Sci., 16 (3), 799–805.

[34] Kim, Y.G., Yun, S.G., Kim, M.Y., Park, K., Cho, C.H., Yoon, S.Y., Nam, M.H., Lee, C.K., Cho, Y.J., and Lim, C.S., 2017, Comparison between saliva and nasopharyngeal swab specimens for detection of respiratory viruses by multiplex reverse transcription-PCR, J. Clin. Microbiol., 55 (1), 226–233.

[35] Comber, L., Walsh, K.A., Jordan, K., O'Brien, K.K., Clyne, B., Teljeur, C., Drummond, L., Carty, P.G., De Gascun, C.F., Smith, S.M., Harrington, P., Ryan, M., and O'Neill, M., 2021, Alternative clinical specimens for the detection of SARS‐CoV‐2: A rapid review, Rev. Med. Virol., 31 (4), e2185.

[36] Liv, L, 2021, Electrochemical immunosensor platform based on gold-clusters, cysteamine and glutaraldehyde modified electrode for diagnosing COVID-19, Microchem. J., 168, 106445.

[37] Haouet, M.N., Tommasino, M., Mercuri, M.L., Benedetti, F., Di Bella, S., Framboas, M., Pelli, S.., and Altissimi, M.S., 2018, Experimental accelerated shelf life determination of a ready-to-eat processed food, Ital. J. Food. Saf., 7 (4), 189–192.

[38] Arif, A.B., 2016, Metode accelarated shelf life test (ASLT) dengan pendekatan Arrhenius dalam pendugaan umur simpan sari buah nanas, pepaya dan cempedak, Informatika Pertanian, 25 (2), 189–198.

[39] Tetyana, P., Shumbula, P.M., and Njengele-Tetyana, Z., 2021, “Biosensors: Design, Development and Applications” in Nanopores, Eds. Ameen, S., Akhtar, M.S., and Shin, H.S., IntechOpen, Rijeka, 137–144.

[40] Rahayu, Y.C., and Kurniawati, A., 2015, Cairan Rongga Mulut, Pustaka Panasea, Yogyakarta, Indonesia.

[41] Riskayanty, R., Fitriani, N.R.D., and Samad, R., 2014, Profil kandungan unsur anorganik dan organik saliva pada keadaan usia lanjut, Dentofasial, 13 (1), 22–27.

[42] Jiang, Z.W., Zhao, T.T., Li, C.M., Li, Y.F., and Huang, C.Z., 2021, 2D MOF-based photoelectrochemical aptasensor for SARS-CoV-2 spike glycoprotein detection, ACS Appl. Mater. Interfaces, 13 (42), 49754–49761.

[43] Tian, J., Liang, Z., Hu, O., He, Q., Sun, D., and Chen, Z., 2021, An electrochemical dual-aptamer biosensor based on metal-organic frameworks MIL-53 decorated with Au@Pt nanoparticles and enzymes for detection of COVID-19 nucleocapsid protein, Electrochim. Acta, 387, 138553.

[44] Liu, N., Liu, R., and Zhang, J., 2022, CRISPR-Cas12a-mediated label-free electrochemical aptamer-based sensor for SARS-CoV-2 antigen detection, Bioelectrochemistry, 146, 108105.

[45] Han, C., Li, W., Li, Q., Xing, W., Luo, H., Ji, H., Fang, X., Luo, Z., and Zhang, L., 2022, CRISPR/Cas12a-derived electrochemical aptasensor for ultrasensitive detection of COVID-19 nucleocapsid protein, Biosens. Bioelectron., 200, 113922.



DOI: https://doi.org/10.22146/ijc.77887

Article Metrics

Abstract views : 1263 | views : 641


Copyright (c) 2023 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.