Characterization and Antibacterial Activity Assessment of Hydroxyapatite-Betel Leaf Extract Formulation against Streptococcus mutans In Vitro and In Vivo

https://doi.org/10.22146/ijc.77853

Fitriari Izzatunnisa Muhaimin(1*), Sari Edi Cahyaningrum(2), Riska Amelia Lawarti(3), Dina Kartika Maharani(4)

(1) Department of Biology, Faculty of Science and Mathematics, Universitas Negeri Surabaya, Jl. Ketintang, Surabaya 60231, Indonesia
(2) Department of Chemistry, Faculty of Science and Mathematics, Universitas Negeri Surabaya, Jl. Ketintang, Surabaya 60231, Indonesia
(3) Department of Chemistry, Faculty of Science and Mathematics, Universitas Negeri Surabaya, Jl. Ketintang, Surabaya 60231, Indonesia
(4) Department of Chemistry, Faculty of Science and Mathematics, Universitas Negeri Surabaya, Jl. Ketintang, Surabaya 60231, Indonesia
(*) Corresponding Author

Abstract


Hydroxyapatite is an inorganic material that is commonly used as a re-mineralizing agent. Adding natural ingredients such as green betel leaf can increase the antibacterial properties due to the presence of phenolic compounds, flavonoids, and tannins. This study aims to determine the physical and chemical characteristics of the formulation of hydroxyapatite-betel leaf extract and the antibacterial activity against Streptococcus mutans. To characterize the combination of hydroxyapatite-betel leaf extract, XRD, PSA and FTIR analyses were performed. Particle size analysis showed the smallest results in the variation of betel 0.3 g, which is 690.08 nm. FTIR characterization showed the presence of OH, PO43− and CO32− functional groups from hydroxyapatite and C=O derived from betel leaf extract. In addition, in vitro and in vivo analyses were performed to assess the antibacterial activity of this formulation. The in vitro antibacterial activity test against S. mutans showed strong inhibitory activity. Our finding suggests that the formulation has the potential to be used as a medication or prevention agent for dental caries.


Keywords


hydroxyapatite; betel leaf; Streptococcus mutans

Full Text:

Full Text PDF


References

[1] Cho, G.J., Kim, S.Y., Lee, H.C., Kim, H.Y., Lee, K.M., Han, S.W., and Oh, M.J., 2020, Association between dental caries and adverse pregnancy outcomes, Sci. Rep., 10 (1), 5309.

[2] Gutiérrez-Venegas, G., Gómez-Mora, J.A., Meraz-Rodríguez, M.A., Flores-Sánchez, M.A., and Ortiz-Miranda, L.F., 2019, Effect of flavonoids on antimicrobial activity of microorganisms present in dental plaque, Heliyon, 5 (12), e03013.

[3] Pitts, N.B., Twetman, S., Fisher, J., and Marsh, P.D., 2021, Understanding dental caries as a non-communicable disease, Br. Dent. J., 231 (12), 749–753.

[4] Gholibegloo, E., Karbasi, A., Pourhajibagher, M., Chiniforush, N., Ramazani, A., Akbari, T., Bahador, A., and Khoobi, M., 2018, Carnosine-graphene oxide conjugates decorated with hydroxyapatite as promising nanocarrier for ICG loading with enhanced antibacterial effects in photodynamic therapy against Streptococcus mutans, J. Photochem. Photobiol., B, 181, 14–22.

[5] Chen, X., Daliri, E.B.M., Kim, N., Kim, J.R., Yoo, D., and Oh, D.H., 2020, Microbial etiology and prevention of dental caries: Exploiting natural products to inhibit cariogenic biofilms, Pathogens, 9 (7), 569.

[6] Mallya, P.S., and Mallya, S., 2020, Microbiology and clinical implications of dental caries – A review, J. Evol. Med. Dent. Sci., 9 (48), 3670–3675.

[7] Watanabe, A., Kawada-Matsuo, M., Le, M.N.T., Hisatsune, J., Oogai, Y., Nakano, Y., Nakata, M., Miyawaki, S., Sugai, M., and Komatsuzawa, H., 2021, Comprehensive analysis of bacteriocins in Streptococcus mutans, Sci. Rep., 11 (1), 12963.

[8] Lemos, J.A., Palmer, S.R., Zeng, L., Wen, Z.T., Kajfasz, J.K., Freires, I.A., Abranches, J., and Brady, L.J., 2019, The Biology of Streptococcus mutans, Microbiol. Spectrum, 7 (1), 7.1.03.

[9] Amaechi, B.T., Phillips, T.S., Evans, V., Ugwokaegbe, C.P., Luong, M.N., Okoye, L.O., Meyer, F., and Enax, J., 2021, The potential of hydroxyapatite toothpaste to prevent root caries: A pH-cycling study, Clin., Cosmet. Invest. Dent., 13, 315–324.

[10] Sawada, M., Sridhar, K., Kanda, Y., and Yamanaka, S., 2021, Pure hydroxyapatite synthesis originating from amorphous calcium carbonate, Sci. Rep., 11 (1), 11546.

[11] Suresh Kumar, C., Dhanaraj, K., Vimalathithan, R.M., Ilaiyaraja, P., and Suresh, G., 2020, Hydroxyapatite for bone related applications derived from sea shell waste by simpleprecipitation method, J. Asian Ceram. Soc., 8 (2), 416–429.

[12] Siddiqui, H.A., Pickering, K.L., and Mucalo, M.R., 2018, A review on the use of hydroxyapatite-carbonaceous structure composites in bone replacement materials for strengthening purposes, Materials, 11 (10), 1813.

[13] Nozari, A., Ajami, S., Rafiei, A., and Niazi, E., 2017, Impact of nano hydroxyapatite, nano silver fluoride and sodium fluoride varnish on primary enamel remineralization: An in vitro study, J. Clin. Diagn. Res., 11 (9), ZC97–ZC100.

[14] Wu, S.C., Hsu, H.C., Hsu, S.K., Chang, Y.C., and Ho, W.F., 2016, Synthesis of hydroxyapatite from eggshell powders through ball milling and heat treatment, J. Asian Ceram. Soc., 4 (1), 85–90.

[15] Mtavangu, S.G., Mahene, W., Machunda, R.L., van der Bruggen, B., and Njau, K.N., 2022, Cockle (Anadara granosa) shells-based hydroxyapatite and its potential for defluoridation of drinking water, Results Eng., 13, 100379.

[16] Sinulingga, K., Sirait, M., Siregar, N., and Abdullah, H., 2021, Synthesis and characterizations of natural limestone-derived nano-hydroxyapatite (HAp): A comparison study of different metals doped HAps on antibacterial activity, RSC Adv., 11 (26), 15896–15904.

[17] Manalu, J.L., Soegijono, B., and Indrani, D.J., 2015, Characterization of hydroxyapatite derived from bovine bone, Asian J. Appl. Sci., 3 (4), 758–765.

[18] Nayaka, N.M.D.M.W., Sasadara, M.M.V., Sanjaya, D.A., Yuda, P.E.S.K., Dewi, N.L.K.A.A., Cahyaningsih, E., and Hartati, R., 2021, Piper betle (L): Recent review of antibacterial and antifungal properties, safety profiles, and commercial applications, Molecules, 26 (8), 2321.

[19] Lubis, R.R., Marlisa, M., and Wahyuni, D.D., 2020, Antibacterial activity of betle leaf (Piper betle L.) extract on inhibiting Staphylococcus aureus in conjunctivitis patient, Am. J. Clin. Exp. Immunol., 9 (1), 1–5.

[20] Madhumita, M., Guha, P., and Nag, A., 2019, Extraction of betel leaves (Piper betle L.) essential oil and its bio-actives identification: Process optimization, GC-MS analysis and anti-microbial activity, Ind. Crops Prod., 138, 111578.

[21] Umesh, M., Choudhury, D.D., Shanmugam, S., Ganesan, S., Alsehli, M., Elfasakhany, A., and Pugazhendhi, A., 2021, Eggshells biowaste for hydroxyapatite green synthesis using extract piper betel leaf - Evaluation of antibacterial and antibiofilm activity, Environ. Res., 200, 111493.

[22] Puzanov, I., Diab, A., Abdallah, K., Bingham, C.O., Brogdon, C., Dadu, R., Hamad, L., Kim, S., Lacouture, M.E., LeBoeuf, N.R., Lenihan, D., Onofrei, C., Shannon, V., Sharma, R., Silk, A.W., Skondra, D., Suarez-Almazor, M.E., Wang, Y., Wiley, K., Kaufman, H.L., Ernstoff, M.S., and Society for Immunotherapy of Cancer Toxicity Management Working Group, 2017, Managing toxicities associated with immune checkpoint inhibitors: Consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group, J. ImmunoTher. Cancer, 5 (1), 95.

[23] Qian, G., Liu, W., Zheng, L., and Liu, L., 2017, Facile synthesis of three dimensional porous hydroxyapatite using carboxymethylcellulose as a template, Results Phys., 7, 1623–1627.

[24] Hoelzer, K., Cummings, K.J., Warnick, L.D., Schukken, Y.H., Siler, J.D., Gröhn, Y.T., Davis, M.A., Besser, T.E., and Wiedmann, M., 2011, Agar disk diffusion and automated microbroth dilution produce similar antimicrobial susceptibility testing results for Salmonella serotypes Newport, Typhimurium, and 4,5,12:i-, but differ in economic cost, Foodborne Pathog. Dis., 8 (12), 1281–1288.

[25] Dantas, M.G.B., Reis, S.A.G.B., Damasceno, C.M.D., Rolim, L.A., Rolim-Neto, P.J., Carvalho, F.O., Quintans-Junior, L.J., and da Silva Almeida, J.R.G., 2016, Development and evaluation of stability of a gel formulation containing the monoterpene borneol, Sci. World J., 2016, 7394685.

[26] Ariyanthini, K.S., Angelina, E., Permana, K.N.B., Thelmalina, F.J., and Prasetia, I.G.N.J.A., 2021, Antibacterial activity testing of hand sanitizer gel extract of coriander (Coriandrum sativum L.) Seeds against Staphylococcus aureus, J. Pharm. Sci. Appl., 3 (2), 98–107.

[27] Razooki, S.M.M., and Rabee, A.M., 2019, Kinetic profile of silver and zinc oxide nanoparticles by intraperitoneal injection in mice, a comparative study, Period. Eng. Nat. Sci., 7 (3), 1499–1511.

[28] Iciek, M., Kotańska, M., Knutelska, J., Bednarski, M., Zygmunt, M., Kowalczyk-Pachel, D., Bilska-Wilkosz, A., Górny, M., and Sokołowska-Jeżewicz, M., 2017, The effect of NaCl on the level of reduced sulfur compounds in rat liver. Implications for blood pressure increase, Postepy Hig. Med. Dosw., 71 (1), 564–576.

[29] Wolfoviz-Zilberman, A., Kraitman, R., Hazan, R., Friedman, M., Houri-Haddad, Y., and Beyth, N., 2021, Phage targeting Streptococcus mutans in vitro and in vivo as a caries-preventive modality, Antibiotics, 10 (8), 1015.

[30] Kono, T., Sakae, T., Nakada, H., Kaneda, T., and Okada, H., 2022, Confusion between carbonate apatite and biological apatite (carbonated hydroxyapatite) in bone and teeth, Minerals, 12 (2), 170.

[31] Jeevanandam, J., Barhoum, A., Chan, Y.S., Dufresne, A., and Danquah, M.K., 2018, Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations, Beilstein J. Nanotechnol., 9, 1050–1074.

[32] Xu, Y., Chu, Y., Feng, X., Gao, C., Wu, D., Cheng, W., Meng, L., Zhang, Y., and Tang, X., 2020, Effects of zein stabilized clove essential oil Pickering emulsion on the structure and properties of chitosan-based edible films, Int. J. Biol. Macromol., 156, 111–119.

[33] da Silva, B.L., Abuçafy, M.P., Berbel Manaia, E., Oshiro Junior, J.A., Chiari-Andréo, B.G., Pietro, R.C.L.R., and Chiavacci, L.A., 2019, Relationship between structure and antimicrobial activity of zinc oxide nanoparticles: An overview, Int. J. Nanomedicine, 14, 9395–9410.

[34] Liu, X., Yu, Y., Bai, X., Li, X., Zhang, J., and Wang, D., 2023, Rapid identification of insecticide- and herbicide-tolerant genetically modified maize using mid-infrared spectroscopy, Processes, 11 (1), 90.

[35] Wang, M., Qian, R., Bao, M., Gu, C., and Zhu, P., 2018, Raman, FT-IR and XRD study of bovine bone mineral and carbonated apatites with different carbonate levels, Mater. Lett., 210, 203–206.

[36] Bang, L.T., Ramesh, S., Purbolaksono, J., Ching, Y.C., Long, B.D., Chandran, H., Ramesh, S., and Othman, R., 2015, Effects of silicate and carbonate substitution on the properties of hydroxyapatite prepared by aqueous co-precipitation method, Mater. Des., 87, 788–796.

[37] Mondal, S., Mondal, B., Dey, A., and Mukhopadhyay, S.S., 2012, Studies on processing and characterization of hydroxyapatite biomaterials from different bio wastes, J. Miner. Mater. Charact. Eng., 11 (1), 55–67.

[38] Cahyaningrum, S.E., Amaria, A., Ramadhan, M.I.F., and Herdyastuti, N., 2020, Synthesis hydroxyapatite/collagen/chitosan composite as bone graft for bone fracture repair, Proceedings of the International Joint Conference on Science and Engineering (IJCSE 2020), Atlantis Press, Paris, France, 337–341.

[39] Jiménez-Martínez, J., Le Borgne, T., Tabuteau, H., and Méheust, Y., 2017, Impact of saturation on dispersion and mixing in porous media: Photobleaching pulse injection experiments and shear-enhanced mixing model, Water Resour. Res., 53 (2), 1457–1472.

[40] van Dijke, K., Kobayashi, I., Schroën, K., Uemura, K., Nakajima, M., and Boom, R., 2010, Effect of viscosities of dispersed and continuous phases in microchannel oil-in-water emulsification, Microfluid. Nanofluid., 9 (1), 77–85.

[41] Chen, M.X., Alexander, K.S., and Baki, G., 2016, Formulation and evaluation of antibacterial creams and gels containing metal ions for topical application, J. Pharm., 2016, 5754349.

[42] Nugrahaeni, F., Nining, N., and Okvianida, R., 2022, The effect of HPMC concentration as a gelling agent on color stability of copigmented blush gel extract of purple sweet (Ipomoea batatas (L.) Lam.), IOP Conf. Ser.: Earth Environ. Sci., 1041, 012070.

[43] Bornare, S.S., Aher, S.S., and Saudagar, R.B., 2018, A review: Film forming gel novel drug delivery system, Int. J. Curr. Pharm. Res., 10 (2), 25–28.

[44] Seyedmajidi, S., Rajabnia, R., and Seyedmajidi, M., 2018, Evaluation of antibacterial properties of hydroxyapatite/bioactive glass and fluorapatite/bioactive glass nanocomposite foams as a cellular scaffold of bone tissue, J. Lab. Physicians, 10 (3), 265–270.

[45] Subri, L.M., Dewi, W., and Satari, M.H., 2012, The antimicrobial effect of piper betel leaves extract against Streptococcus mutans, Padjadjaran J. Dent., 24 (3), 174–178.

[46] Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R., and De Feo, V., 2013, Effect of essential oils on pathogenic bacteria, Pharmaceuticals, 6 (12), 1451–1474.

[47] Lobiuc, A., Pavăl, N.E., Mangalagiu, I.I., Gheorghiță, R., Teliban, G.C., Amăriucăi-Mantu, D., and Stoleru, V., 2023, Future antimicrobials: Natural and functionalized phenolics, Molecules, 28 (3), 1114.

[48] Xie, Y., Yang, W., Tang, F., Chen, X., and Ren, L., 2014, Antibacterial activities of flavonoids: Structure-activity relationship and mechanism, Curr. Med. Chem., 22 (1), 132–149.

[49] Yuan, G., Guan, Y., Yi, H., Lai, S., Sun, Y., and Cao, S., 2021, Antibacterial activity and mechanism of plant flavonoids to gram-positive bacteria predicted from their lipophilicities, Sci. Rep., 11 (1), 10471.

[50] Štumpf, S., Hostnik, G., Primožič, M., Leitgeb, M., Salminen, J.P., and Bren, U., 2020, The effect of growth medium strength on minimum inhibitory concentrations of tannins and tannin extracts against E. coli, Molecules, 25 (12), 2947.

[51] Kaczmarek, B., 2020, Tannic acid with antiviral and antibacterial activity as a promising component of biomaterials-A minireview, Materials, 13 (14), 3224.



DOI: https://doi.org/10.22146/ijc.77853

Article Metrics

Abstract views : 2447 | views : 1768


Copyright (c) 2023 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.