Antioxidant Activity of Fungus Comb Extracts Isolated from Indo-Malayan Termite Macrotermes gilvus Hagen (Isoptera: Termitidae)

https://doi.org/10.22146/ijc.77227

Yanti Rachmayanti(1*), Dikhi Firmansyah(2), Reza Ro'isatul Umma(3), Decsa Medika Hertanto(4), I Ketut Sudiana(5), Djoko Santoso(6), Dodi Nandika(7), Lina Karlinasari(8), Arinana Arinana(9), Irmanida Batubara(10), Lucia Dhiantika Witasari(11)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, West Java, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, West Java, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, West Java, Indonesia
(4) Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Campus A, Jl. Mayjen Prof. Dr. Moestopo 47 Surabaya, 60132, East Java, Indonesia
(5) Department of Pathology, Faculty of Medicine, Universitas Airlangga, Campus A, Jl. Mayjen Prof. Dr. Moestopo 47 Surabaya, 60132, East Java, Indonesia
(6) Department of Pathology, Faculty of Medicine, Universitas Airlangga, Campus A, Jl. Mayjen Prof. Dr. Moestopo 47 Surabaya, 60132, East Java, Indonesia
(7) Department of Forest Products, Faculty of Forestry and Environment, IPB University, Darmaga Campus, Bogor 16680, West Java, Indonesia
(8) Department of Forest Products, Faculty of Forestry and Environment, IPB University, Darmaga Campus, Bogor 16680, West Java, Indonesia
(9) Department of Forest Products, Faculty of Forestry and Environment, IPB University, Darmaga Campus, Bogor 16680, West Java, Indonesia
(10) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Tropical Biopharmaca Research Center, IPB University, Darmaga Campus, Bogor 16680, West Java, Indonesia
(11) Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Bulaksumur, Yogyakarta, 55281, Indonesia
(*) Corresponding Author

Abstract


Indonesian termites are one of the wealthiest biological resources considering their very high species diversity (300 species) and extensive geographical distribution in the Indonesian mainland. However, its potential as a source of bioactive compounds has not been fully explored. One of the endemic termite sub-families of Indonesian, Macrotermitinae (Isoptera: Termitidae), has a food source in the form of fungal nodules that grow and spread in a particular structure in the termite nest that is shaped like a mammalian brain called a fungus comb, which likely serves as a source of bioactive compounds. This study aims to analyze the potential of fungus comb from an Indonesian Macrotermitinae sub-family species as a source of antioxidants. Antioxidant activity was tested on four different extracts of fungus comb (EFC), namely hexane extract, ethyl acetate extract, methanol extract and water extract, using DPPH• (1,1-diphenyl-2-picrylhydrazyl) and ABTS•+ (2,2′-azino-di-[3-ethylbenzthiazolinesulphonate]) radicals. The results showed that the highest antioxidant activity was found in methanol extract, followed by ethyl acetate extract with IC50 values of 0.6 mg/mL and 0.75 mg/mL, respectively. TEAC (Trolox equivalent antioxidant capacity) analysis confirmed the high antioxidant activity of methanol extract.


Keywords


Macrotermitinae; fungus comb extract; antioxidant; ABTS•+; DPPH•; IC50; TEAC

Full Text:

Full Text PDF


References

[1] Santos-Sánchez, N.F., Salas-Coronado, R., Villanueva-Cañongo, C., and Hernández-Carlos, B., 2019, “Antioxidant Compounds and Their Antioxidant Mechanism” in Antioxidants, Eds. Shalaby, E., IntechOpen, Rijeka, Croatia.

[2] Britannica, The Editors of Encyclopaedia, "Antioxidant", Encyclopedia Britannica, 28 July 2022, https://www.britannica.com/science/antioxidant, accessed on 5 August 2022.

[3] Shahidi, F., and John, J.A., 2013, “Oxidative Rancidity in Nuts” in Improving the Safety and Quality of Nuts, Eds. Harris, L.J., Woodhead Publishing, Sawston, Cambridge, UK, 198–229

[4] Neha, K., Haider, M.R., Pathak, A., and Yar, M.S., 2019, Medicinal prospects of antioxidants: A review, Eur. J. Med. Chem., 178, 687–704

[5] Stanner, S., and Weichselbaum, E., 2013, “Antioxidants” in Encyclopedia of Human Nutrition, 3rd Ed., Eds. Caballero, B., Academic Press, Waltham, Massachusetts, US, 88–99.

[6] Shahidi, F., 2015, “Antioxidants: Principles and Applications” in Handbook of Antioxidants for Food Preservation, Eds. Shahidi, F., Woodhead Publishing, Sawston, Cambridge, UK, 1–14.

[7] Zeb, A., 2020, Concept, mechanism, and applications of phenolic antioxidants in foods, J. Food Biochem., 44 (9), e13394.

[8] Boozer, C.E., Hammond, G.S., Hamilton, C.E., and Sen, J.N., 1955, Air oxidation of hydrocarbons.1 II. The stoichiometry and fate of inhibitors in benzene and chlorobenzene, J. Am. Chem. Soc., 77 (12), 3233–3237.

[9] Pedersen, C.J., 1956, Mechanism of antioxidant action in gasoline, Ind. Eng. Chem., 48 (10), 1881–1884.

[10] Veliyeva, L., Sadıqova, A., Israfilova, Z., Rzaeva, I., Kurbanova, M., Farzaliyev, V., Maharramov, A., and Sujayev, A., 2021, Towards fuel antioxidants of new types, Appl. Petrochem. Res., 11 (3), 317–325.

[11] Nishath, P.M., Krishnaveni, A., and Shameer, P.M., 2020, Assessment of antioxidant impact on fuel stability and emission personality for Alexandrian laurel and Poison nut biodiesel, Fuel, 278, 118313.

[12] Abdulfatai, U., Uzairu, A., Uba, S., and Shallangwa, G.A., 2019, Molecular design of antioxidant lubricating oil additives via QSPR and analysis dynamic simulation method, Heliyon, 5 (11), e02880.

[13] Canter, N., 2016, Antioxidants: Key additives enable lubricants to operate under more severe conditions, Tribology & Lubrication Technology (TLT), September 2016, 10–21.

[14] Aragaw, T.A., Bogale, F.M., and Gessesse, A., 2022, Adaptive response of thermophiles to redox stress and their role in the process of dye degradation from textile industry wastewater, Front Physiol., 13, 908370.

[15] Fortune Business Insights, 2021, “The global antioxidants market is expected to grow from $4.13 billion in 2021 to $6.05 billion in 2028 at a CAGR of 5.61% in the forecast period, 2021-2028” in Food and Beverage Market Research Report, July 2021, https://www.fortunebusinessinsights.com/industry-reports/food-antioxidants-market-100789, accessed on 5 August 2022.

[16] Bignell, D.E., Roisin, Y., and Lo, N., 2011, Biology of Termites: A Modern Synthesis, Springer, Dordrecht.

[17] Evangelista, D.A., Wipfler, B., Béthoux, O., Donath, A., Fujita, M., Kohli, M.K., Legendre, F., Liu, S., Machida, R., Misof, B., Peters, R.S., Podsiadlowski, L., Rust, J., Schuette, K., Tollenaar, W., Ware, J.L., Wappler, T., Zhou, X., Meusemann, K., and Simon, S., 2019, Data from: An integrative phylogenomic approach illuminates the evolutionary history of cockroaches and termites (Blattodea), Proc. R. Soc. B, 286 (1895), 20182076.

[18] Nandika, D., Rismayadi, Y., and Diba, F., 2015, Rayap: Biologi dan Pengendaliannya, 2nd Ed., Muhammadiyah University Press, Surakarta.

[19] Kusumawardhani, D.T., Nandika, D., Karlinasari, L., Arinana, A., and Batubara, I., 2021, Architectural and physical properties of fungus comb from subterranean termite Macrotermes gilvus (Isoptera: Termitidae) mound, Biodiversitas, 22 (4), 1627–1634.

[20] Qian, Q., Li, S.F., and Wen, H.A., 2011, Fungal diversity of fungus comb in termite nests, Mycosystema, 30 (4), 556–565.

[21] Thomas, R.J., 1987, Factors affecting the distribution and activity of fungi in the nests of Macrotermitinae (Isoptera), Soil Biol. Biochem., 19 (3), 343–349.

[22] Nandika, D., Karlinasari, L., Arinana, A., Batubara, I., Sitanggang, P.S., Santoso, D., Witasari, L.D., Rachmayanti, Y., Firmansyah, D., Sudiana, I.K., and Hertanto, D.M., 2021, Chemical components of fungus comb from Indo-Malayan termite Macrotermes gilvus Hagen mound and its bioactivity against wood-staining fungi, Forests, 12 (11), 1591.

[23] Witasari, L.D., Wahyu, K.W., Anugrahani, B.J., Kurniawan, S.C., Haryanto, A., Nandika, D., Karlinasari, L., Arinana, A., Batubara, I., Santoso, D., Rachmayanti, Y., Firmansyah, D., Sudiana, I.K., and Hertanto, D.M., 2022, Antimicrobial activities of fungus comb extracts isolated from Indomalayan termite (Macrotermes gilvus Hagen) mound, AMB Express, 12 (1), 14.

[24] Tsao, R., 2015, “Synergistic Interactions Between Antioxidants Used in Food Preservation” in Handbook of Antioxidants for Food Preservation, Eds. Shahidi, F., Sawston, Cambridge, UK, 335-47.

[25] Munteanu, I.G., and Apetrei, C., 2021, Analytical methods used in determining antioxidant activity: A review, Int. J. Mol. Sci., 22 (7), 3380.

[26] Safitri, A., Batubara, I., and Khumaida, N., 2017, Thin layer chromatography fingerprint, antioxidant, and antibacterial activities of rhizomes, stems, and leaves of Curcuma aeruginosa Roxb., J. Phys.: Conf. Ser., 835, 012014.

[27] Brand-Williams, W., Cuvelier, M.E., and Berset, C., 1995, Use of a free radical method to evaluate antioxidant activity, LWT-Food Sci. Technol., 28 (1), 25–30.

[28] Bhuyar, P., Sundararaju, S., Ab Rahim, M.H., Unpaprom, Y., Maniam, G.P., and Govindan, N., 2021, Antioxidative study of polysaccharides extracted from red (Kappaphycus alvarezii), green (Kappaphycus striatus) and brown (Padina gymnospora) marine macroalgae/seaweed, SN Appl. Sci., 3 (4), 485.

[29] Hu, T., Liu, D., Chen, Y., Wu, J., and Wang, S., 2010, Antioxidant activity of sulfated polysaccahrides fractions extracted from Undaria pinnitafida in vitro, Int. J. Biol. Macromol., 46 (2), 193–198.

[30] Sukweenadhi, J., Yunita, O., Setiawan, F., Kartini, K., Siagian, M.T., Danduru, A.P., and Avanti, C., 2020, Antioxidant activity screening of seven Indonesian herbal extract, Biodiversitas, 21 (5), 2062–2067.

[31] Nazarudin, M.F., Isha, A., Mastuki, S.N., Mohd Ain, N., Mohd Ikhsan, N.F., Zainal Abidin, A., and Aliyu-Paiko, M., 2020, Chemical composition and evaluation of the α-glucosidase inhibitory and cytotoxic properties of marine algae Ulva intestinalis, Halimeda macroloba, and Sargassum ilicifolium, Evidence-Based Complementary Altern. Med., 2020, 2753945.

[32] Lahimer, M.C., Ayed, N., Horriche, J., and Belgaied, S., 2017, Characterization of plastic packaging additives: Food contact, stability and toxicity, Arabian J. Chem., 10, 1938–54.

[33] Lauraguais, A., Coeur-Tourneur, C., Cassez, A., and Seydi, A., 2012, Rate constant and secondary organic aerosol yields for the gas-phase reaction of hydroxyl radicals with syringol (2,6-dimethoxyphenol), Atmos. Environ., 55, 43–48.

[34] Adelakun, O.E., Kudanga, T., Green, I.R., Roes-Hill, M.L., and Burton, S.G., 2012, Enzymatic modification of 2,6-dimethoxyphenol for the synthesis of dimers with high antioxidant capacity, Process Biochem., 47 (12), 1926–1932.

[35] Velmurugan, N., Han, S.S., and Lee, Y.S., 2009, Antifungal activity of neutralized wood vinegar with water extracts of Pinus densiflora and Quercus serrata saw dusts, Int. J. Environ. Res., 3 (2), 167–176.

[36] Kähkönen, M.P., Hopia, A.I., Vuorela, H.J., Rauha, J.P., Pihlaja, K., Kujala, T.S., and Heinonen, M., 1999, Antioxidant activity of plant extracts containing phenolic compounds, J. Agric. Food Chem., 47 (10), 3954–3962.

[37] Wojdyło, A., Oszmiański, J., and Czemerys, R., 2007, Antioxidant activity and phenolic compounds in 32 selected herbs, Food Chem., 105 (3), 940–949.



DOI: https://doi.org/10.22146/ijc.77227

Article Metrics

Abstract views : 3807 | views : 2247


Copyright (c) 2022 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.