Enhancing Compressive Strength and Dentin Interaction of Mineral Trioxide Aggregate by Adding SrO and Hydroxyapatite
Leny Yuliatun(1), Eko Sri Kunarti(2), Widjijono Widjijono(3), Nuryono Nuryono(4*)
(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(3) Department of Dental Biomaterials, Faculty of Dentistry, Universitas Gadjah Mada, Jl. Denta 1, Sekip Utara, Yogyakarta 55281, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(*) Corresponding Author
Abstract
In this research, the effect of strontium oxide (SrO) and hydroxyapatite (HA) on the properties of mineral trioxide aggregate (MTA) have been studied. MTA contained 20% SiO2, 60% CaO, and 2% Al2O3. Bi2O3 and SrO have been added with 18% (w/w) total percentage. MTA was prepared with a sol-gel process using a weak base (NH3) as a catalyst and calcined at 1000 °C for 3 h. The effect of HA was investigated by adding various percentages (3, 6, and 9%) on the MTA modified with 5% SrO. The modified MTA (MTA-SrO-HA) products were hydrated using water with the MTA to water weight ratio of 3:1. The results showed that tricalcium silicate (C3S), dicalcium silicate (C2S), Bi2O3, and strontium silicate peaks were detected in the XRD patterns. An increase in the intensity in the infrared spectra of CaO occurred after hybridization with HA. In addition, bonding of Ca-O-Si appeared at 879 and 995 cm−1, indicating the formation of cement. MTA modified with 5% SrO and 6% HA showed similar compressive strength to the commercial MTA (ProRoot brand). Furthermore, MTA-SrO5/HA6 showed a strong interface interaction with dentin adheres without any gaps, indicating a potential dental material for the future.
Keywords
Full Text:
Full Text PDFReferences
[1] Flores-Ladesma, A., Santana, F.B., Bucio, L., Arenas-Alatorre, J., Faraji, M., and Wintergerst, A., 2017, Bioactive materials improve some physical properties of an MTA-like cement, Mater. Sci. Eng., C, 71, 150–155.
[2] Tawil, P.Z., Duggan, D.J., and Galicia, J.C., 2015, Mineral trioxide aggregate (MTA): Its history, composition, and clinical applications, Compend. Contin. Educ. Dent., 36 (4), 247–264.
[3] Macwan, C., and Deshpande, A., 2014, Mineral trioxide aggregate (MTA) in dentistry: A review of literature, J. Oral Res. Rev., 6 (2), 71–74.
[4] Prasad, K., and Naik, C.T., 2017, Mineral trioxide aggregate in endodontics, Int. J. Appl. Dent. Sci., 3 (1), 71–75.
[5] Nishad, K.V., Manoj, K., and Unnikrishnan, G., 2019, Synthesis of strontium orthosilicate (Sr2SiO4) by sol-gel method, for the use in endodontic cements to enhance bioactivity and radio-contrast, Mater. Res. Express, 6, 105401.
[6] Bakhit, A., Kawashima, N., Hashimoto, K., Noda, S., Nara, K., Kuramoto, M., Tazawa, K., and Okiji, T., 2018, Strontium ranelate promotes odonto-/osteogenic differentiation/mineralization of dental papillae cells in vitro and mineralized tissue formation of the dental pulp in vivo, Sci. Rep., 8 (1), 9224.
[7] Abd El-Hamid, H.K., Abo-Almaged, H., dan Radwan, M., 2017, Synthesis, characterization, and antimicrobial activity of nano-crystalline tricalcium silicate bio-cement, J. Appl. Pharm. Sci., 7 (10), 1–8.
[8] Ressler, A., Cvetnić, M., Antunović, M., Marijanović, I., Ivanković, M., and Ivanković, H., 2020, Strontium substituted biomimetic calcium phosphate system derived from cuttlefish bone, J. Biomed. Mater. Res., Part B, 108 (4), 1697–1709.
[9] Swarup, S.J., Rao, A., Boaz, K., Srikant, N., and Shenoy, R., 2014, Pulpal response to nano hydroxyapatite, mineral trioxide aggregate and calcium hydroxide when used as a direct pulp capping agent: An in vivo study, J. Clin. Pediatr. Dent., 38 (3), 201–206.
[10] Hanafy, A.K., Shinaishin, S.F., Eldeen, G.N., and Aly, R.M., 2018, Nano hydroxyapatite & mineral trioxide aggregate efficiently promote odontogenic differentiation of dental pulp stem cells, Open Access Maced. J. Med. Sci., 6 (9), 1727–1731.
[11] Kakani, A.K., Veeramachaneni, C., Majeti, C., Tummala, M., and Khiyani, L., 2015, A review on perforation repair materials, J. Clin. Diagn. Res., 9 (9), ZE09–ZE13.
[12] Hosseinzade, M., Soflou, R.K., Valian, A., and Nojehdehian, H., 2016, Physicochemical properties of MTA, CEM, hydroxyapatite and nano hydroxyapatite-chitosan dental cements, Biomed. Res., 27 (2), 442–448.
[13] Agrawal, K., Singh, G., Puri, D., and Prakash, S., 2011, Synthesis and characterization of hydroxyapatite powder by sol-gel method for biomedical application, J. Miner. Mater. Charact. Eng., 10 (8), 727–734.
[14] Fa’izzah, M., Widjijono, W., Kamiya, Y., and Nuryono, N., 2020, Synthesis and characterization of white mineral trioxide aggregate using precipitated calcium carbonate extracted from limestone, Key Eng. Mater., 840, 330–335.
[15] Phuttawong, R., Chantaramee, N., Pookmanee, P., and Puntharod, R., 2015, Synthesis and characterization of calcium silicate from rice husk ash and shell of snail Pomacea canaliculata by solid-state reaction, Adv. Mater. Res., 1103, 1–7.
[16] Chen, S., Shi, L., Luo, J., and Engqvist, H., 2018, Novel fast-setting mineral trioxide aggregate: Its formulation, chemical-physical properties, and cytocompability, ACS Appl. Mater. Interfaces, 10 (24), 20334–20341.
[17] Li, Q., and Coleman, N.J., 2015, The hydration chemistry of ProRoot MTA, Dent. Mater. J., 34 (4), 458–465.
[18] Lee, B.S., Lin, H.P., Chan, J.C.C., Wang, W.C., Hung, P.H., Tsai, Y.H., and Lee, Y., 2018, A novel sol-gel-derived calcium silicate cement with short setting time for application in endodontic repair of perforations, Int. J. Nanomed., 13, 261–271.
[19] Khoiruddin, M., Yelmida, Y., and Zultiniar, Z., 2015, Sintesis dan karakterisasi hidroksiapatit (Hap) dari kulit kerang darah (Anadara granosa) dengan proses hidrotermal, JOM FTEKNIK, 2 (2), 1–8.
[20] Voicu, G., Bădănoiu, A., Ghiţulică, C., and Andronescu, E, 2012, Sol-gel of white mineral tioxide aggregate with potential use as biocement, Dig. J. Nanomater. Biostruct., 7 (4), 1639–1646.
[21] Ummah, S., Prasetyo, A., and Barroroh, H., 2010, Kajian penambahan abu sekam padi dari berbagai suhu pengabuan terhadap plastisitas kaolin, Alchemy, 1 (2), 70–74.
[22] Zhu, H., Guo, D., Sun, L., Li, H., Hanaor, D.A.H., Schmidt, F., and Xu, K., 2018, Nanostructural insights into the dissolution behavior of Sr-doped hydroxyapatite, J. Eur. Ceram. Soc., 38 (16), 5554-5562.
[23] Ehret, C., Aid-Launais, R., Sagardoy, T., Siadous, R., Bareille, R., Rey, S., Pechev, S., Etienne, L., Kalisky, J., de Mones, E., Letourneur, D., and Vilamitjana, J., 2017, Strotium-doped hydroxyapatite polysaccharide materials effect on ectopic bone formation, PLoS One, 12 (9), e0184663.
[24] Kim, M., Yang, W., Kim, H., and Ko, H., 2014, Comparison of biological properties of ProRoot MTA, OrthoMTA, and Endocem MTA cements, J. Endod., 40 (10), 1649–1653.
[25] Basturk, F., Nekoofar, M.H., Gunday, M., and Dummer, P.M.H., 2015, Effect of varying water-to-powder ratios and ultrasonic placement on the compressive strength of mineral trioxide aggregate, J. Endod., 41 (4), 531–534.
[26] Saghiri, M.A., Asgar, K., Lotfi, M., and Garcia-Godoy, F., 2012, Nanomodification of mineral trioxide aggregate for enhanced physiochemical properties, Int. Endod. J., 45 (11), 979–988.
[27] Alqedairi, A., Muñoz-Viveros, C.A., Pantena, E.A., Campillo-Funollet, M., Alfawas, H., Abou Neel, E.A., and Abuhaimed, T.S., 2017, Superfast set, strong, and less degradable mineral trioxide aggregate cement, Int. J. Dent., 2017, 3019136.
[28] Tanomaru-Filho, M., Morales, V., da Silva, G.F., Bosso, R., Reis, J.M.S.N., Duarte, M.A.H., and Guerreiro-Tanomaru, J.M., 2012, Compressive strength and setting time of MTA and Portland cement associated with different radiopacifying agents, ISRN Dent., 2012, 898051.
[29] Coomaraswamy, K.S., Lumley, P.J., and Hofmann, M.P., 2007, Effect of bismuth oxide radioopacifier content on the material properties of an endodontic Portland cement-based (MTA-Like) system, J. Endod., 33 (3), 295–298.
[30] Malhotra, N., Agarwal, A., and Mala, K., 2013, Mineral trioxide aggregate: A review of physical properties, Compend. Contin. Educ. Dent., 34 (2), e25–e32.
[31] Bortoluzzi, E.A., Broon, N.J., Bramante, C.M., Garcia, R.B., de Moraes, I.G., and Bernardineli, N., 2006, Sealing ability of MTA and radiopaque Portland cement with or without calcium chloride for root-end filling, J. Endod., 32 (9), 897–900.
[32] Shekhar, S., Jaiswal, S., Nikhil, V., Gupta, S., Mishra, P., and Raj, S., 2019, Comparative pH and calcium ion release in newer calcium silicate‑based root canal sealers, Endodontology, 31 (1), 29–33.
[33] Ghazvini, S.A., Tabrizi, M.A., Kobarfard, F., Baghban, A.A., and Asgary, S., 2009, Ion release and pH of a new endodontic cement, MTA and Portland cement, Iran. Endod. J., 4 (2), 74–8.
[34] Mark, A.M., 2018, What is dental erosion?, J. Am. Dent. Assoc., 149 (6), 564.
[35] Gandolfi, M.G., Iezzi, G., Piattelli, A., Prati, C., and Scarano, A., 2017, Osteoinductive potential and bone-bonding ability of ProRoot MTA, MTA Plus and Biodentine in rabbit intramedullary model: Microchemical characterization and histological analysis, Dent. Mater., 33 (5), e221–e238.
[36] Sawhney, S., and Vivekananda Pai, A.R., 2015, Comparative evaluation of the calcium release from mineral trioxide aggregate and its mixture with glass ionomer cement in different proportions and time, Saudi Dent. J., 27 (4), 215–219.
[37] Yamamoto, S., Han, L., Noiri, Y., and Okiji, T., 2017, Evaluation of the Ca ion release, pH and surface apatite formation of a prototype tricalcium silicate cement, Int. Endod. J., 50 (S2), e73–e82.
[38] Patil, S., Hoshing, U., and Rachalwar, D., 2017, Solubility of 5 different root canal sealers in water and artificial saliva, Int. J. Curr. Res., 9, 61490–61493.
[39] Ha, W.N., Nicholson, T., Kahler, B., and Walsh, L., 2017, Mineral trioxide aggregate-A review of properties and testing methodologies, Materials, 10 (11) 1261.
[40] Li, Q., and Coleman, N.J., 2019, Impact of Bi2O3 and ZrO2 radiopacifiers on the early hydration and C-S–H gel structure of white Portland cement, Dent. Mater. J., 10 (4), 46.
[41] Dewi, F., Asrianti, D., and Margono, A., 2017, Microleakage evaluation of modified mineral trioxide aggregate effect toward marginal adaptation on cervical dentin perforation, Int. J. Appl. Pharm., 9 (2), 10–13.
[42] Sarkar, N.K., Caicedo, R., Ritwik, P., Moiseyeva, R., and Kawashima, I., 2005, Physicochemical basis of the biologic properties of MTA, J. Endod., 31 (2), 97–100.
DOI: https://doi.org/10.22146/ijc.76231
Article Metrics
Abstract views : 2629 | views : 1792Copyright (c) 2022 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.