Electronic-Structures Calculations of Calcium-Intercalated Bilayer Graphene: A First-Principle Study


Sri Hidayati(1), Iman Santoso(2), Sefty Yunitasari(3), Sholihun Sholihun(4*)

(1) Computational Physics Research Group, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara BLS 21, Yogyakarta 55281, Indonesia; Department of Physics, Faculty of Science and Technology, Universitas Islam Negeri Sunan Kalijaga, Jl. Laksda Adisucipto, Yogyakarta 55281, Indonesia
(2) Computational Physics Research Group, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara BLS 21, Yogyakarta 55281, Indonesia
(3) Computational Physics Research Group, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara BLS 21, Yogyakarta 55281, Indonesia
(4) Computational Physics Research Group, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara BLS 21, Yogyakarta 55281, Indonesia
(*) Corresponding Author


In this study, electronic structure calculations of Ca-intercalated bilayer graphene are conducted using the density functional theory (DFT). We modeled two configurations by positioning calcium in the middle of the bilayer (M-site) and on top of the bilayer surface (T-site). Our results show that the Dirac point is shifted below the fermi level. The approximated critical temperature is 7.9 K. We then calculated the electron transfer and formation energy for each system. We found that, for the M-site, the electron transfer increased as the Ca concentration increased, while the reverse occurred for T-site. The calculated formation energies were negative, meaning that all configurations were spontaneously created. In other words, the involved reactions were exothermic.


Ca-intercalated bilayer graphene; formation energy; electronic structure

Full Text:

Full Text PDF


[1] Emery, N., Hérold, C., Marêché, J.F., and Lagrange, P., 2010, Synthesis and superconducting properties of CaC6, Sci. Technol. Adv. Mater., 9 (4), 044102.

[2] Novoselov, K.S., Geim, A.K., Morosov, S.U., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A., 2004, Electric field effect in atomically thin carbon films, Science, 306 (5696), 666–669.

[3] Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., and Geim, A.K., 2009, The electronic properties of graphene, Rev. Mod. Phys., 81 (1), 109–162.

[4] Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morosov, S.V., and Geim, A.K., 2005, Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. U.S.A., 102 (30), 10451–10453.

[5] Lee, C., Wei, X., Kysar, J.W., and Hone, J., 2008, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321 (5887), 385–388.

[6] Geim, A.K., and Novoselov, K.S., 2007, The rise of graphene, Nat. Mater., 6 (3), 183–191.

[7] Taghioskoui, M., 2009, Trends in graphene research, Mater. Today, 12 (10), 34–37.

[8] Elias, D.C., Nair, R.R., Mohiuddin, T.M.G., Morosov, S.V., Blake, P., Halsall, M.P., Ferrari, A.C., Boukhvalov, D.W., Katsnelson, M.I., Geim, A.K., and Novoselov, K.S., 2009, Control of graphene's properties by reversible hydrogenation: Evidence for graphene, Science, 323 (5914), 610–613.

[9] Schedin, F., Geim, A.K., Morosov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I., and Novoselov, K.S., 2007, Detection of individual gas molecules adsorbed on graphene, Nat. Mater., 6 (9), 652–655.

[10] Rofique, M., Shuai, Y., and Hussain, N., 2018, First-principles study on silicon atom doped monolayer graphene, Phys. E, 95, 94–101.

[11] Laref, A., Ahmed, A., Bin-Omran, S., and Luo, S.J., 2015, First-principle analysis of the electronic and optical properties of boron and nitrogen doped carbon mono-layer graphenes, Carbon, 81, 179–192.

[12] Shokuhi Rad, A., Zareyee, D., Peyravi, M., and Jahanshahi, M., 2016, Surface study of gallium- and aluminum- doped graphenes upon adsorption of cytosine: DFT calculations, Appl. Surf. Sci., 390, 444–451.

[13] Dennis, P.A., 2016, Mono and dual doped monolayer graphene with aluminum, silicon, phosphorus and sulfur, Comput. Theor. Chem., 1097, 40–47.

[14] Santos, E.J.G., Sánchez-Portal, D., and Ayuela, A., 2010, Magnetism of substitutional Co impurities in graphene: Realization of single π vacancies, Phys. Rev. B, 81, 125433.

[15] Ichinokura, S., Sugawara, K., Takayama, A., Takahashi, T., and Hasegawa, S., 2016, Superconducting calcium-intercalated bilayer graphene, ACS Nano, 10 (2), 2761–2765.

[16] Chapman, J., Su, Y., Howard, C.A., Kundys, D., Grigorenko, A.N., Guinea, F., Geim, A.K., Grigorieva, I.V., and Nair, R.R., 2016, Superconductivity in Ca-doped graphene laminates, Sci. Rep., 6 (1), 23254.

[17] Proveta, G., Calandra, M., and Mauri, F., 2012, Phonon-mediated superconductivity in graphene by lithium deposition, Nat. Phys., 8 (2), 131–134.

[18] The Center for Research on Innovative Simulation Software (CISS), PHASE, http://www.ciss.iis.u-tokyo.ac.jp/dl/index.php, accessed on June 20, 2017.

[19] Umam, K., Sholihun, S., Nurwantoro, P., Absor, M.A.U., Nugraheni, A.D., and Budhi, R.H.S., 2018, Biaxial strain effects on the electronic properties of silicene: The density-functional-theory-based calculations, J. Phys.: Conf. Ser., 1011, 012074.

[20] Amalia, W., Nurwantoro, P., and Sholihun, S., 2019, Density-functional-theory calculations of structural and electronic properties of vacancies in monolayer hexagonal boron nitride (h-BN), Comput. Condens. Matter, 18, e00354.

[21] Lin, J., Yamasaki, T., and Saito, M., 2014, Spin polarized positron lifetimes in ferromagnetic metals: First-principles study, Jpn. J. Appl. Phys., 53, 053002.

[22] Nurainun, N.Y., Lin, J., Alam, M.S., Nishida, K., and Saito, M., 2011, First-principles calculations of hydrogen and hydrogen-vacancy pairs in graphene, Trans. Mater. Res. Soc. Jpn., 36 (4), 619–621.

[23] Sholihun, S., Amalia, W., Hastuti, D.P., Nurwantoro, P., Nugraheni, A.D., and Budhi, R.H.S., 2019, Magic vacancy-numbers in h-BN multivacancies: The first-principles study, Mater. Today Commun., 20, 100591.

[24] Hastuti, D.P., Nurwantoro, P., and Sholihun, S., 2019, Stability study of germanene vacancies: The first-principles calculations, Mater. Today Commun., 19, 459–463.

[25] Hidayati, S., 2019, Kajian Komputasi Sumbangan Struktur Elektronik Pada Superkonduktivitas Bilayer Graphene Terdoping Kalsium Menggunakan Density Functional Theory, Thesis, Universitas Gadjah Mada, Indonesia.

[26] Delley, B., 1990, An all-electron numerical method for solving the local density functional for polyatomic molecules, J. Chem. Phys., 92, 508–517.

[27] Sun, M., Tang, W., Ren, Q., Wang, S., Yu, J., Du, Y., and Zhang, Y., 2015, First-principles study of the alkali earth metal atoms adsorption on graphene, Appl. Surf. Sci., 356, 668–673.

[28] Mazin, I.I., and Balatsky, A.V., 2010, Superconductivity in Ca-intercalated bilayer graphene, Philos. Mag. Lett., 90 (10), 731–738.

[29] Marchenco, D., Evtushinsky, D.V., Golias, E., Varykhalov, A., Seyller, Th., and Rader, O., 2018, Extremely flat band in bilayer graphene, Sci. Adv., 4, eaau0059.

[30] McChesney, J.L., Bostwick, A., Otha, T., Seyller, T., Horn, K., González, J., and Rotenberg, E., 2010, Extended van Hove singularity and superconducting instability in doped graphene, Phys. Rev. Lett., 104, 136803.

[31] Kiesel, M.L., Platt, C., Hanke, W., Abanin, D.A., and Thomale, R., 2012, Competing many-body instabilities and unconventional superconductivity in graphene, Phys. Rev. B, 86 (2), 020507.

[32] Kopnin, N.B., Heikkilä, T.T., and Volovik, G.E., 2011, High-temperature surface superconductivity in topological flat-band system, Phys. Rev. B, 83 (22), 220503.

[33] Thomsen, C., Reich, S., and Ordejón, P., 2002, Ab initio determination of the phonon deformation potentials of graphene, Phys. Rev. B, 65, 073403.

DOI: https://doi.org/10.22146/ijc.75647

Article Metrics

Abstract views : 1834 | views : 1358

Copyright (c) 2022 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.