Synthesis, Characterization, and Theoretical Study of a New Organotellurium Ligands Containing Amino Group

Gofran Safi Mokhtar(1), Nuha Hussain Al-Saadawy(2*)

(1) Faculty of Archaeology, University of Thi-Qar, Thi-Qar, 64001, Iraq
(2) Department of Chemistry, College of Science, University of Thi-Qar, Thi-Qar, 64001, Iraq
(*) Corresponding Author


The aim of the current study is to prepare organomercury and organotellurium compounds containing amino groups such as [1,1'-biphenyl]-4-amine and their derivatives by a mercuriation reaction. The research includes the preparation of a new organotellurium compound based on [1,1'-biphenyl]-4-amine. C12H10NHgCl (A) was obtained by mercuriation reaction to [1,1'-biphenyl]-4-amine by mercuric acetate and lithium chloride. C12H10Br3NTe (B), C24H20N2Br2Te (C), C24H20N2Te (D), and C24H20N2Te2 (E) were prepared by different reactions to get the corresponding compounds. All the prepared ligands were characterized by using infrared spectroscopy and mass spectroscopy. DFT has been obtained by the basis set 3-21G to investigate the molecular structure of the new prepared organotellurium compounds. HOMO and LUMO surfaces, geometrical structure, and energy gap have been obtained throughout the geometry optimization. Finally, the electron affinity, electronegativity, electrophilicity, ionization potential, and lower case of organotellurium compounds have been calculated and discussed. The result of the chemical analysis showed that it agreed with the proposed chemical structures, and a theoretical study using DFT has concluded that more stability of the prepared organotellurium compounds.


organotellurium; 4-amino biphenyl; ditelluride; organyl tellurium dibromide


[1] Liang, X., Perez, M.A.M.J., Nwoko, K.C., Egbers, P., Feldmann, J., Csetenyi, L., and Gadd, G.M., 2019, Fungal formation of selenium and tellurium nanoparticles, Appl. Microbiol. Biotechnol., 103 (17), 7241–7259.

[2] Irfan, M., Rehman, R., Razali, M.R., Ur Rehman, S., Ur Rehman, A., and Iqbal, M.A., 2020, Organotellurium compounds: An overview of synthetic methodologies, Rev. Inorg. Chem., 40 (4), 193–232.

[3] Chivers, T., and Laitinen, R.S., 2015, Tellurium: A maverick among the chalcogens, Chem. Soc. Rev., 44 (7), 1725–1739.

[4] Pop, A., Silvestru, C., and Silvestru, A., 2019, Organoselenium and organotellurium compounds containing chalcogen-oxygen bonds in organic synthesis or related processes, Phys. Sci. Rev., 4 (5), 20180061.

[5] Vaigankar, D.C., Dubey, S.K., Mujawar, S.Y., D’Costa, A., and Shyama, S.K., 2018, Tellurite biotransformation and detoxification by Shewanella baltica with simultaneous synthesis of tellurium nanorods exhibiting photo-catalytic and anti-biofilm activity, Ecotoxicol. Environ. Saf., 165, 516–526.

[6] Missen, O.P., Ram, R., Mills, S.J., Etschmann, B., Reith, F., Shuster, J., Smith, D.J., and Brugger, J., 2020, Love is in the Earth: A review of tellurium (bio)geochemistry in surface environments, Earth-Sci. Rev., 204, 103150.

[7] Alduino, C., Alfonso, K., Artusa, D.R., Avignone, F.T., Azzolini, O., Banks, T.I., Bari, G., Beeman, J.W., Bellini, F., Bersani, A., Biassoni, M., Brofferio, C., Bucci, C., Camacho, A., Caminata, A., Canonica, L., Cao, X.G., Capelli, S., Cappelli, L., Carbone, L., Cardani, L., Carniti, P., Casali, N., Cassina, L., Chiesa, D., Chott, N., Clemenza, M., Copello, S., Cosmelli, C., Cremonesi, O., Creswick, R.J., Cushman, J.S., D’Addabbo, A., Dafinei, I., Davis, C.J., Dell’Oro, S., Deninno, M.M., Di Domizio, S., Di Vacri, M.L., Drobizhev, A., Fang, D.Q., Faverzani, M., Feintzeig, J., Fernandes, G., Ferri, E., Ferroni, F., Fiorini, E., Franceschi, M.A., Freedman, S.J., Fujikawa, B.K., Giachero, A., Gironi, L., Giuliani, A., Gladstone, L., Gorla, P., Gotti, C., Gutierrez, T.D., Haller, E.E., Han, K., Hansen, E., Heeger, K.M., Hennings-Yeomans, R., Hickerson, K.P., Huang, H.Z., Kadel, R., Keppel, G., Kolomensky, Y.G., Leder, A., Ligi, C., Lim, K.E., Liu, X., Ma, Y.G., Maino, M., Marini, L., Martinez, M., Maruyama, R.H., Mei, Y., Moggi, N., Morganti, S., Mosteiro, P.J., Napolitano, T., Nones, C., Norman, E.B., Nucciotti, A., O’Donnell, T., Orio, F., Ouellet, J.L., Pagliarone, C.E., Pallavicini, M., Palmieri, V., Pattavina, L., Pavan, M., Pessina, G., Pettinacci, V., Piperno, G., Pira, C., Pirro, S., Pozzi, S., Previtali, E., Rosenfeld, C., Rusconi, C., Sangiorgio, S., Santone, D., Scielzo, N.D., Singh, V., Sisti, M., Smith, A.R., Taffarello, L., Tenconi, M., Terranova, F., Tomei, C., Trentalange, S., Vignati, M., Wagaarachchi, S.L., Wang, B.S., Wang, H.W., Wilson, J., Winslow, L.A., Wise, T., Woodcraft, A., Zanotti, L., Zhang, G.Q., Zhu, B.X., Zimmermann, S., and Zucchelli, S., 2017, Measurement of the two-neutrino double beta decay half-live of 130Te with the CUORE-o experiment, Eur. Phys. J. C, 77 (1), 13.

[8] Clark, R.A., McNamara, B.K., Barinaga, C.J., Peterson, J.M., Govind, N., Andersen, A., Abrecht, D.G., Schwantes, J.M., and Ballou, N.E., 2015, Electron ionization mass spectrum of tellurium hexafluoride, Inorg. Chem., 54 (10), 4821–4826.

[9] Sredni, B., 2012, Immunomodulating tellurium compounds as anti-cancer agents, Semin. Cancer Biol., 22 (1), 60–69.

[10] Perron, J.C., 1967, Electrical and thermoelectrical properties of selenium-tellurium liquid alloys, Adv. Phys., 16 (64), 657–666.

[11] Yin, Y., Cao, R., Guo, J., Liu, C., Li, J., Feng, X., Wang, H., Du, W., Qadir, A., Zhang, H., Ma, Y., Gao, S., Xu, Y., Shi, Y., Tong, L., and Dai, D., 2019, High-speed and high-responsivity hybrid silicon/black-phosphorus waveguide photodetectors at 2 µm, Laser Photonics Rev., 13 (6), 1900032.

[12] Yamago, S., 2021, Practical synthesis of dendritic hyperbranched polymers by reversible deactivation radical polymerization, Polym. J., 53 (8), 847–864.

[13] Kavlak, G., and Graedel, T.E., 2013, Global anthropogenic tellurium cycles for 1940–2010, Resour., Conserv. Recycl., 76, 21–26.

[14] Filella, M., Reimann, C., Biver, M., Rodushkin, I., and Rodushkina, K., 2019, Tellurium in the environment: Current knowledge and identification of gaps, Environ. Chem., 16 (4), 215–228.

[15] Aziz, F.K., Gazar, S.H., and Al-Saadawy, N.H., 2020, Simple, selective, and sensitive spectrophotometric method for determination of trace amounts of lead(II), cadmium(II), cobalt(II) with organomercury compounds, J. Global Pharma Technol., 12 (6), 248–255.

[16] Al-Fregi, A.A., Al-Asfoor, A.F., and Jabar, S.F., 2015, Synthesis and characterization of some new series of 2-(4-hydroxynaphthylazo)-5-substituted phenyltellutrium tribromides and ditellurides compounds, Int. J. Sci. Eng. Res., 6 (3), 274–281.

[17] Silverstein, R.M., and Bassler, G.C., 1962, Spectrometric identification of organic compounds, J. Chem. Educ., 39 (11), 546.

[18] Oliveira, G.P., Barboza, B.H., and Batagin-Neto A., 2022, Polyaniline-based gas sensors: DFT study on the effect of side groups, Comput. Theor. Chem., 1207, 113526.

[19] Ahmed, W.M., Al-Saadawy, N.H., and Abowd, M.I., 2021, Synthesis and characterization of a new organoselenium and organotellurium compounds depending on 9-chloro-10-nitro-9,10-dihydroanthracene, Ann. Romanian Soc. Cell Biol., 25 (4), 11035–11043.

[20] Anand, D., He, Y., Li, L., and Zhou, L., 2019, A photocatalytic sp3 C–S, C–Se and C–B bond formation through C–C bond cleavage of cycloketone oxime esters, Org. Biomol. Chem., 17 (3), 533–540.

[21] Pavia, D.L., Lampman, G.M., Kriz, G.S., and Vyvyan, J.A., 2014, Introduction to Spectroscopy, Cengage Learning, Boston, US.

[22] Al-Saadawy, N.H., 2022, New organotellurium compounds based on camphor, aniline and p-toluidine: Preparation, characterization and theoretical study, Egypt. J. Chem., 65 (2), 19–27.

[23] Abbas, S.H., Al-Fregi, A.A., and Al-Yaseen, A.A., 2021, Synthesis of some new organotellurium compounds based on 1-substituted tetrazole, J. Phys.: Conf. Ser., 1853, 012034.

[24] McWhinnie, W.R., and Thavornyutikarn, P., 1972, A spectroscopic examination of phenyltellurium trihalides, J. Chem. Soc., Dalton Trans., 4, 551–554.

[25] Boursas, F., Berrah, F., Kanagathara, N., Anbalagan, G., and Bouacida, S., 2019, XRD, FT-IR, FT-Raman spectrum and ab initio HF vibrational analysis of bis (5-amino-3-carboxy-1H-1,2,4-triazol-4-ium) selenate dihydrate, J. Mol. Struct., 1180, 532–541.

[26] Khanage, S.G., 2014, Synthesis and biological evaluation of new triazole derivatives, Dissertation, Vinayaka Missions University, Tamil Nadu, India.

[27] Abdul-Nabi, A.S., and Jasim, E.Q., 2014, Synthesis, characterization and study of some tetrazole compounds as new corrosion inhibitors for C-steel in 0.5 M HCl solution, Int. J. Eng. Res., 3 (10), 613–617.

[28] Scheinmann, F., 2013, An Introduction to Spectroscopic Methods for the Identification of Organic Compounds: Mass Spectrometry, Ultraviolet Spectroscopy, Electron Spin Resonance Spectroscopy, Nuclear Magnetic Resonance Spectroscopy (Recent Developments), Use of Various Spectral Methods Together, and Documentation of Molecular Spectra, Elsevier Science, Amsterdam, Netherlands.

[29] Al-Rubaie, A.Z., and Yousif, L.Z., 2020, Synthesis and reaction of 2-acetylamino-2’-tellurocyanato-1,1’-binaphthyl, IOP Conf. Ser.: Mater. Sci. Eng., 928, 52035.

[30] Achouba, A., Dumas, P., Ouellet, N., Little, M., Lemire, M., and Ayotte, P., 2019, Selenoneine is a major selenium species in beluga skin and red blood cells of Inuit from Nunavik, Chemosphere, 229, 549–558.

[31] Frogley, B.J., Genet, T.L., Hill, A.F., and Onn, C.S., 2019, Alkynylselenolatoalkylidynes (LnM≡C–Se–C≡CR) as building blocks for mixed metal/main-group extended frameworks, Dalton Trans., 48 (22), 7632–7643.

[32] Al-Asadi, R.H., 2019, Synthesis, DFT calculation and biological activity of some organotellurium compounds containing azomethine group, Orbital: Electron. J. Chem., 11 (7), 402–410.

[33] Gusakova, J., Wang, X., Shiau, L.L., Krivosheeva, A., Shaposhnikov, V., Borisenko, V., Gusakov, V., and Tay, B.K., 2017, Electronic properties of bulk and monolayer TMDs: Theoretical study within DFT framework (GVJ‐2e method), Phys. Status Solidi A, 214 (12), 1700218.

[34] Bagayoko, D., 2014, Understanding density functional theory (DFT) and completing it in practice, AIP Adv., 4 (12), 127104.

[35] Koch, W., and Holthausen, M.C., 2015, A Chemist's Guide to Density Functional Theory, Wiley-VCH, Weinheim, Germany.

[36] Ali, A.M., 2009, Investigations of some antioxidant materials by using density functional and semiempirical theories, Dissertation, College of Science, University of Basrah, Iraq.

[37] Sheela, N.R., Muthu, S., and Sampathkrishnan, S., 2014, Molecular orbital studies (hardness, chemical potential, and electrophilicity), vibrational investigation and theoretical NBO analysis of 4-4′-(1H-1,2,4-triazol-1-yl methylene) dibenzonitrile based on ab initio and DFT methods, Spectrochim. Acta, Part A, 120, 237–251.

[38] Arivazhagan, M., Manivel, S., Jeyavijayan, S., and Meenakshi, R., 2015, Vibrational spectroscopic (FTIR and FT-Raman), first-order hyperpolarizablity, HOMO, LUMO, NBO, Mulliken charge analyses of 2-ethylimidazole based on Hartree–Fock and DFT calculations, Spectrochim. Acta, Part A, 134, 493–501.

[39] Al-Saadawy, N.H., 2022, Synthesis, characterization, and theoretical study of some new organotellurium compounds derived from camphor, Indones. J. Chem., 22 (2), 437–448.

[40] Abood, H.I., 2014, Density functional theory calculations of di-amino naphthalene, J. Univ. Babylon Pure Appl. Sci., 22 (3), 1132–1145.

[41] Vikramaditya, T., and Lin, S.T., 2017, Assessing the role of Hartree Fock exchange, correlation energy and long range corrections in evaluating ionization potential, and electron affinity in density functional theory, J. Comput. Chem., 38 (21), 1844–1852.

[42] Kaya, S., Kariper, S.E., Ungördü, A., and Kaya, C., 2014, Effect of some electron donor and electron acceptor groups on stability of complexes according to the principle of HSAB, J New Results Sci., 4, 82–89.

[43] Vennila, P., Govindaraju, M., Venkatesh, G., and Kamal, C., 2016, Molecular structure, vibrational spectral assignments (FT-IR and FT-RAMAN), NMR, NBO, HOMO-LUMO and NLO properties of O-methoxybenzaldehyde based on DFT calculations, J. Mol. Struct., 1111, 151–156.


Article Metrics

Abstract views : 1403 | views : 561 | views : 397

Copyright (c) 2022 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.